


Probabilistic Machine Learning



Adaptive Computation and Machine Learning
Thomas Dietterich, Editor
Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, Associate Editors

Bioinformatics: The Machine Learning Approach, Pierre Baldi and Søren Brunak
Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto
Graphical Models for Machine Learning and Digital Communication, Brendan J. Frey
Learning in Graphical Models, Michael I. Jordan
Causation, Prediction, and Search, second edition, Peter Spirtes, Clark Glymour, and Richard
Scheines
Principles of Data Mining, David Hand, Heikki Mannila, and Padhraic Smyth
Bioinformatics: The Machine Learning Approach, second edition, Pierre Baldi and Søren Brunak
Learning Kernel Classifiers: Theory and Algorithms, Ralf Herbrich
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond,
Bernhard Schölkopf and Alexander J. Smola
Introduction to Machine Learning, Ethem Alpaydin
Gaussian Processes for Machine Learning, Carl Edward Rasmussen and Christopher K.I. Williams
Semi-Supervised Learning, Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, Eds.
The Minimum Description Length Principle, Peter D. Grünwald
Introduction to Statistical Relational Learning, Lise Getoor and Ben Taskar, Eds.
Probabilistic Graphical Models: Principles and Techniques, Daphne Koller and Nir Friedman
Introduction to Machine Learning, second edition, Ethem Alpaydin
Boosting: Foundations and Algorithms, Robert E. Schapire and Yoav Freund
Machine Learning: A Probabilistic Perspective, Kevin P. Murphy
Foundations of Machine Learning, Mehryar Mohri, Afshin Rostami, and Ameet Talwalker
Probabilistic Machine Learning: An Introduction, Kevin P. Murphy



Probabilistic Machine Learning
An Introduction

Kevin P. Murphy

The MIT Press
Cambridge, Massachusetts
London, England



© 2022 Massachusetts Institute of Technology

This work is subject to a Creative Commons CC-BY-NC-ND license.

Subject to such license, all rights are reserved.

The MIT Press would like to thank the anonymous peer reviewers who provided comments on drafts of this
book. The generous work of academic experts is essential for establishing the authority and quality of our
publications. We acknowledge with gratitude the contributions of these otherwise uncredited readers.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Murphy, Kevin P., author.
Title: Probabilistic machine learning : an introduction / Kevin P. Murphy.
Description: Cambridge, Massachusetts : The MIT Press, [2022]
Series: Adaptive computation and machine learning series
Includes bibliographical references and index.
Identifiers: LCCN 2021027430 | ISBN 9780262046824 (hardcover)
Subjects: LCSH: Machine learning. | Probabilities.
Classification: LCC Q325.5 .M872 2022 | DDC 006.3/1–dc23
LC record available at https://lccn.loc.gov/2021027430

10 9 8 7 6 5 4 3 2 1



This book is dedicated to my mother, Brigid Murphy,
who introduced me to the joy of learning and teaching.





Brief Contents

1 Introduction 1

I Foundations 31
2 Probability: Univariate Models 33
3 Probability: Multivariate Models 77
4 Statistics 107
5 Decision Theory 167
6 Information Theory 205
7 Linear Algebra 227
8 Optimization 273

II Linear Models 319
9 Linear Discriminant Analysis 321
10 Logistic Regression 337
11 Linear Regression 369
12 Generalized Linear Models * 413

III Deep Neural Networks 421
13 Neural Networks for Tabular Data 423
14 Neural Networks for Images 465
15 Neural Networks for Sequences 501

IV Nonparametric Models 543
16 Exemplar-based Methods 545
17 Kernel Methods * 565
18 Trees, Forests, Bagging, and Boosting 601



viii BRIEF CONTENTS

V Beyond Supervised Learning 623
19 Learning with Fewer Labeled Examples 625
20 Dimensionality Reduction 655
21 Clustering 713
22 Recommender Systems 739
23 Graph Embeddings * 751
A Notation 771

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



Contents

Preface xxvii

1 Introduction 1
1.1 What is machine learning? 1
1.2 Supervised learning 1

1.2.1 Classification 2
1.2.2 Regression 8
1.2.3 Overfitting and generalization 12
1.2.4 No free lunch theorem 13

1.3 Unsupervised learning 14
1.3.1 Clustering 14
1.3.2 Discovering latent “factors of variation” 15
1.3.3 Self-supervised learning 16
1.3.4 Evaluating unsupervised learning 16

1.4 Reinforcement learning 17
1.5 Data 19

1.5.1 Some common image datasets 19
1.5.2 Some common text datasets 22
1.5.3 Preprocessing discrete input data 23
1.5.4 Preprocessing text data 24
1.5.5 Handling missing data 27

1.6 Discussion 27
1.6.1 The relationship between ML and other fields 27
1.6.2 Structure of the book 28
1.6.3 Caveats 28

I Foundations 31
2 Probability: Univariate Models 33

2.1 Introduction 33
2.1.1 What is probability? 33



x CONTENTS

2.1.2 Types of uncertainty 33
2.1.3 Probability as an extension of logic 34

2.2 Random variables 35
2.2.1 Discrete random variables 35
2.2.2 Continuous random variables 36
2.2.3 Sets of related random variables 38
2.2.4 Independence and conditional independence 39
2.2.5 Moments of a distribution 40
2.2.6 Limitations of summary statistics * 43

2.3 Bayes’ rule 44
2.3.1 Example: Testing for COVID-19 46
2.3.2 Example: The Monty Hall problem 47
2.3.3 Inverse problems * 49

2.4 Bernoulli and binomial distributions 49
2.4.1 Definition 49
2.4.2 Sigmoid (logistic) function 50
2.4.3 Binary logistic regression 52

2.5 Categorical and multinomial distributions 53
2.5.1 Definition 53
2.5.2 Softmax function 54
2.5.3 Multiclass logistic regression 55
2.5.4 Log-sum-exp trick 56

2.6 Univariate Gaussian (normal) distribution 57
2.6.1 Cumulative distribution function 57
2.6.2 Probability density function 58
2.6.3 Regression 59
2.6.4 Why is the Gaussian distribution so widely used? 60
2.6.5 Dirac delta function as a limiting case 60

2.7 Some other common univariate distributions * 61
2.7.1 Student t distribution 61
2.7.2 Cauchy distribution 62
2.7.3 Laplace distribution 63
2.7.4 Beta distribution 63
2.7.5 Gamma distribution 64
2.7.6 Empirical distribution 65

2.8 Transformations of random variables * 66
2.8.1 Discrete case 66
2.8.2 Continuous case 66
2.8.3 Invertible transformations (bijections) 66
2.8.4 Moments of a linear transformation 69
2.8.5 The convolution theorem 70
2.8.6 Central limit theorem 71
2.8.7 Monte Carlo approximation 72

2.9 Exercises 73

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xi

3 Probability: Multivariate Models 77
3.1 Joint distributions for multiple random variables 77

3.1.1 Covariance 77
3.1.2 Correlation 78
3.1.3 Uncorrelated does not imply independent 79
3.1.4 Correlation does not imply causation 79
3.1.5 Simpson’s paradox 80

3.2 The multivariate Gaussian (normal) distribution 80
3.2.1 Definition 81
3.2.2 Mahalanobis distance 83
3.2.3 Marginals and conditionals of an MVN * 84
3.2.4 Example: conditioning a 2d Gaussian 85
3.2.5 Example: Imputing missing values * 85

3.3 Linear Gaussian systems * 86
3.3.1 Bayes rule for Gaussians 87
3.3.2 Derivation * 87
3.3.3 Example: Inferring an unknown scalar 88
3.3.4 Example: inferring an unknown vector 90
3.3.5 Example: sensor fusion 92

3.4 The exponential family * 93
3.4.1 Definition 93
3.4.2 Example 94
3.4.3 Log partition function is cumulant generating function 95
3.4.4 Maximum entropy derivation of the exponential family 95

3.5 Mixture models 96
3.5.1 Gaussian mixture models 97
3.5.2 Bernoulli mixture models 98

3.6 Probabilistic graphical models * 99
3.6.1 Representation 100
3.6.2 Inference 102
3.6.3 Learning 102

3.7 Exercises 103

4 Statistics 107
4.1 Introduction 107
4.2 Maximum likelihood estimation (MLE) 107

4.2.1 Definition 107
4.2.2 Justification for MLE 108
4.2.3 Example: MLE for the Bernoulli distribution 110
4.2.4 Example: MLE for the categorical distribution 111
4.2.5 Example: MLE for the univariate Gaussian 111
4.2.6 Example: MLE for the multivariate Gaussian 112
4.2.7 Example: MLE for linear regression 114

4.3 Empirical risk minimization (ERM) 115
4.3.1 Example: minimizing the misclassification rate 116

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



xii CONTENTS

4.3.2 Surrogate loss 116
4.4 Other estimation methods * 117

4.4.1 The method of moments 117
4.4.2 Online (recursive) estimation 119

4.5 Regularization 120
4.5.1 Example: MAP estimation for the Bernoulli distribution 121
4.5.2 Example: MAP estimation for the multivariate Gaussian * 122
4.5.3 Example: weight decay 123
4.5.4 Picking the regularizer using a validation set 124
4.5.5 Cross-validation 125
4.5.6 Early stopping 126
4.5.7 Using more data 127

4.6 Bayesian statistics * 129
4.6.1 Conjugate priors 129
4.6.2 The beta-binomial model 130
4.6.3 The Dirichlet-multinomial model 137
4.6.4 The Gaussian-Gaussian model 141
4.6.5 Beyond conjugate priors 144
4.6.6 Credible intervals 146
4.6.7 Bayesian machine learning 147
4.6.8 Computational issues 151

4.7 Frequentist statistics * 154
4.7.1 Sampling distributions 154
4.7.2 Gaussian approximation of the sampling distribution of the MLE 155
4.7.3 Bootstrap approximation of the sampling distribution of any estimator 156
4.7.4 Confidence intervals 157
4.7.5 Caution: Confidence intervals are not credible 158
4.7.6 The bias-variance tradeoff 159

4.8 Exercises 164

5 Decision Theory 167
5.1 Bayesian decision theory 167

5.1.1 Basics 167
5.1.2 Classification problems 169
5.1.3 ROC curves 171
5.1.4 Precision-recall curves 174
5.1.5 Regression problems 176
5.1.6 Probabilistic prediction problems 177

5.2 Choosing the “right” model 179
5.2.1 Bayesian hypothesis testing 179
5.2.2 Bayesian model selection 180
5.2.3 Occam’s razor 182
5.2.4 Connection between cross validation and marginal likelihood 184
5.2.5 Information criteria 185
5.2.6 Posterior inference over effect sizes and Bayesian significance testing 186

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xiii

5.3 Frequentist decision theory 188
5.3.1 Computing the risk of an estimator 188
5.3.2 Consistent estimators 191
5.3.3 Admissible estimators 191

5.4 Empirical risk minimization 192
5.4.1 Empirical risk 192
5.4.2 Structural risk 194
5.4.3 Cross-validation 194
5.4.4 Statistical learning theory * 195

5.5 Frequentist hypothesis testing * 197
5.5.1 Likelihood ratio test 197
5.5.2 Type I vs type II errors and the Neyman-Pearson lemma 198
5.5.3 Null hypothesis significance testing (NHST) and p-values 198
5.5.4 p-values considered harmful 199
5.5.5 Why isn’t everyone a Bayesian? 201

5.6 Exercises 203

6 Information Theory 205
6.1 Entropy 205

6.1.1 Entropy for discrete random variables 205
6.1.2 Cross entropy 207
6.1.3 Joint entropy 207
6.1.4 Conditional entropy 208
6.1.5 Perplexity 209
6.1.6 Differential entropy for continuous random variables * 210

6.2 Relative entropy (KL divergence) * 211
6.2.1 Definition 211
6.2.2 Interpretation 212
6.2.3 Example: KL divergence between two Gaussians 212
6.2.4 Non-negativity of KL 212
6.2.5 KL divergence and MLE 213
6.2.6 Forward vs reverse KL 214

6.3 Mutual information * 215
6.3.1 Definition 215
6.3.2 Interpretation 216
6.3.3 Example 216
6.3.4 Conditional mutual information 217
6.3.5 MI as a “generalized correlation coefficient” 218
6.3.6 Normalized mutual information 219
6.3.7 Maximal information coefficient 219
6.3.8 Data processing inequality 221
6.3.9 Sufficient Statistics 222
6.3.10 Fano’s inequality * 223

6.4 Exercises 224

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



xiv CONTENTS

7 Linear Algebra 227
7.1 Introduction 227

7.1.1 Notation 227
7.1.2 Vector spaces 230
7.1.3 Norms of a vector and matrix 232
7.1.4 Properties of a matrix 234
7.1.5 Special types of matrices 237

7.2 Matrix multiplication 240
7.2.1 Vector–vector products 240
7.2.2 Matrix–vector products 241
7.2.3 Matrix–matrix products 241
7.2.4 Application: manipulating data matrices 243
7.2.5 Kronecker products * 246
7.2.6 Einstein summation * 246

7.3 Matrix inversion 247
7.3.1 The inverse of a square matrix 247
7.3.2 Schur complements * 248
7.3.3 The matrix inversion lemma * 249
7.3.4 Matrix determinant lemma * 249
7.3.5 Application: deriving the conditionals of an MVN * 250

7.4 Eigenvalue decomposition (EVD) 251
7.4.1 Basics 251
7.4.2 Diagonalization 252
7.4.3 Eigenvalues and eigenvectors of symmetric matrices 253
7.4.4 Geometry of quadratic forms 254
7.4.5 Standardizing and whitening data 254
7.4.6 Power method 256
7.4.7 Deflation 257
7.4.8 Eigenvectors optimize quadratic forms 257

7.5 Singular value decomposition (SVD) 257
7.5.1 Basics 257
7.5.2 Connection between SVD and EVD 258
7.5.3 Pseudo inverse 259
7.5.4 SVD and the range and null space of a matrix * 260
7.5.5 Truncated SVD 262

7.6 Other matrix decompositions * 262
7.6.1 LU factorization 262
7.6.2 QR decomposition 263
7.6.3 Cholesky decomposition 264

7.7 Solving systems of linear equations * 264
7.7.1 Solving square systems 265
7.7.2 Solving underconstrained systems (least norm estimation) 265
7.7.3 Solving overconstrained systems (least squares estimation) 266

7.8 Matrix calculus 267
7.8.1 Derivatives 267

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xv

7.8.2 Gradients 268
7.8.3 Directional derivative 268
7.8.4 Total derivative * 269
7.8.5 Jacobian 269
7.8.6 Hessian 270
7.8.7 Gradients of commonly used functions 270

7.9 Exercises 272

8 Optimization 273
8.1 Introduction 273

8.1.1 Local vs global optimization 273
8.1.2 Constrained vs unconstrained optimization 275
8.1.3 Convex vs nonconvex optimization 275
8.1.4 Smooth vs nonsmooth optimization 279

8.2 First-order methods 280
8.2.1 Descent direction 282
8.2.2 Step size (learning rate) 282
8.2.3 Convergence rates 284
8.2.4 Momentum methods 285

8.3 Second-order methods 287
8.3.1 Newton’s method 287
8.3.2 BFGS and other quasi-Newton methods 288
8.3.3 Trust region methods 289

8.4 Stochastic gradient descent 290
8.4.1 Application to finite sum problems 291
8.4.2 Example: SGD for fitting linear regression 291
8.4.3 Choosing the step size (learning rate) 292
8.4.4 Iterate averaging 295
8.4.5 Variance reduction * 295
8.4.6 Preconditioned SGD 296

8.5 Constrained optimization 299
8.5.1 Lagrange multipliers 300
8.5.2 The KKT conditions 302
8.5.3 Linear programming 303
8.5.4 Quadratic programming 304
8.5.5 Mixed integer linear programming * 305

8.6 Proximal gradient method * 306
8.6.1 Projected gradient descent 306
8.6.2 Proximal operator for `1-norm regularizer 308
8.6.3 Proximal operator for quantization 309
8.6.4 Incremental (online) proximal methods 309

8.7 Bound optimization * 310
8.7.1 The general algorithm 310
8.7.2 The EM algorithm 310
8.7.3 Example: EM for a GMM 313

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



xvi CONTENTS

8.8 Blackbox and derivative free optimization 317
8.9 Exercises 318

II Linear Models 319

9 Linear Discriminant Analysis 321
9.1 Introduction 321
9.2 Gaussian discriminant analysis 321

9.2.1 Quadratic decision boundaries 322
9.2.2 Linear decision boundaries 323
9.2.3 The connection between LDA and logistic regression 323
9.2.4 Model fitting 324
9.2.5 Nearest centroid classifier 326
9.2.6 Fisher’s linear discriminant analysis * 326

9.3 Naive Bayes classifiers 330
9.3.1 Example models 330
9.3.2 Model fitting 331
9.3.3 Bayesian naive Bayes 332
9.3.4 The connection between naive Bayes and logistic regression 333

9.4 Generative vs discriminative classifiers 334
9.4.1 Advantages of discriminative classifiers 334
9.4.2 Advantages of generative classifiers 335
9.4.3 Handling missing features 335

9.5 Exercises 336

10 Logistic Regression 337
10.1 Introduction 337
10.2 Binary logistic regression 337

10.2.1 Linear classifiers 337
10.2.2 Nonlinear classifiers 338
10.2.3 Maximum likelihood estimation 340
10.2.4 Stochastic gradient descent 343
10.2.5 Perceptron algorithm 344
10.2.6 Iteratively reweighted least squares 344
10.2.7 MAP estimation 346
10.2.8 Standardization 348

10.3 Multinomial logistic regression 348
10.3.1 Linear and nonlinear classifiers 349
10.3.2 Maximum likelihood estimation 349
10.3.3 Gradient-based optimization 352
10.3.4 Bound optimization 352
10.3.5 MAP estimation 353
10.3.6 Maximum entropy classifiers 354
10.3.7 Hierarchical classification 355

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xvii

10.3.8 Handling large numbers of classes 356
10.4 Robust logistic regression * 358

10.4.1 Mixture model for the likelihood 358
10.4.2 Bi-tempered loss 359

10.5 Bayesian logistic regression * 361
10.5.1 Laplace approximation 361
10.5.2 Approximating the posterior predictive 364

10.6 Exercises 365

11 Linear Regression 369
11.1 Introduction 369
11.2 Least squares linear regression 369

11.2.1 Terminology 369
11.2.2 Least squares estimation 370
11.2.3 Other approaches to computing the MLE 374
11.2.4 Measuring goodness of fit 378

11.3 Ridge regression 379
11.3.1 Computing the MAP estimate 380
11.3.2 Connection between ridge regression and PCA 381
11.3.3 Choosing the strength of the regularizer 382

11.4 Lasso regression 383
11.4.1 MAP estimation with a Laplace prior (`1 regularization) 383
11.4.2 Why does `1 regularization yield sparse solutions? 384
11.4.3 Hard vs soft thresholding 385
11.4.4 Regularization path 387
11.4.5 Comparison of least squares, lasso, ridge and subset selection 388
11.4.6 Variable selection consistency 390
11.4.7 Group lasso 391
11.4.8 Elastic net (ridge and lasso combined) 394
11.4.9 Optimization algorithms 395

11.5 Regression splines * 397
11.5.1 B-spline basis functions 397
11.5.2 Fitting a linear model using a spline basis 399
11.5.3 Smoothing splines 399
11.5.4 Generalized additive models 399

11.6 Robust linear regression * 400
11.6.1 Laplace likelihood 400
11.6.2 Student-t likelihood 402
11.6.3 Huber loss 402
11.6.4 RANSAC 402

11.7 Bayesian linear regression * 403
11.7.1 Priors 403
11.7.2 Posteriors 403
11.7.3 Example 404
11.7.4 Computing the posterior predictive 404

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



xviii CONTENTS

11.7.5 The advantage of centering 406
11.7.6 Dealing with multicollinearity 407
11.7.7 Automatic relevancy determination (ARD) * 408

11.8 Exercises 409

12 Generalized Linear Models * 413
12.1 Introduction 413
12.2 Examples 413

12.2.1 Linear regression 414
12.2.2 Binomial regression 414
12.2.3 Poisson regression 415

12.3 GLMs with non-canonical link functions 415
12.4 Maximum likelihood estimation 416
12.5 Worked example: predicting insurance claims 417

III Deep Neural Networks 421

13 Neural Networks for Tabular Data 423
13.1 Introduction 423
13.2 Multilayer perceptrons (MLPs) 424

13.2.1 The XOR problem 425
13.2.2 Differentiable MLPs 426
13.2.3 Activation functions 426
13.2.4 Example models 428
13.2.5 The importance of depth 432
13.2.6 The “deep learning revolution” 433
13.2.7 Connections with biology 434

13.3 Backpropagation 436
13.3.1 Forward vs reverse mode differentiation 436
13.3.2 Reverse mode differentiation for multilayer perceptrons 438
13.3.3 Vector-Jacobian product for common layers 439
13.3.4 Computation graphs 442

13.4 Training neural networks 444
13.4.1 Tuning the learning rate 445
13.4.2 Vanishing and exploding gradients 445
13.4.3 Non-saturating activation functions 446
13.4.4 Residual connections 449
13.4.5 Parameter initialization 450
13.4.6 Parallel training 452

13.5 Regularization 453
13.5.1 Early stopping 453
13.5.2 Weight decay 453
13.5.3 Sparse DNNs 453
13.5.4 Dropout 453

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xix

13.5.5 Bayesian neural networks 455
13.5.6 Regularization effects of (stochastic) gradient descent * 455

13.6 Other kinds of feedforward networks * 457
13.6.1 Radial basis function networks 457
13.6.2 Mixtures of experts 459

13.7 Exercises 462

14 Neural Networks for Images 465
14.1 Introduction 465
14.2 Common layers 466

14.2.1 Convolutional layers 466
14.2.2 Pooling layers 473
14.2.3 Putting it all together 474
14.2.4 Normalization layers 474

14.3 Common architectures for image classification 477
14.3.1 LeNet 477
14.3.2 AlexNet 479
14.3.3 GoogLeNet (Inception) 480
14.3.4 ResNet 481
14.3.5 DenseNet 482
14.3.6 Neural architecture search 483

14.4 Other forms of convolution * 484
14.4.1 Dilated convolution 484
14.4.2 Transposed convolution 484
14.4.3 Depthwise separable convolution 486

14.5 Solving other discriminative vision tasks with CNNs * 486
14.5.1 Image tagging 486
14.5.2 Object detection 487
14.5.3 Instance segmentation 488
14.5.4 Semantic segmentation 489
14.5.5 Human pose estimation 490

14.6 Generating images by inverting CNNs * 491
14.6.1 Converting a trained classifier into a generative model 491
14.6.2 Image priors 492
14.6.3 Visualizing the features learned by a CNN 493
14.6.4 Deep Dream 494
14.6.5 Neural style transfer 495

15 Neural Networks for Sequences 501
15.1 Introduction 501
15.2 Recurrent neural networks (RNNs) 501

15.2.1 Vec2Seq (sequence generation) 501
15.2.2 Seq2Vec (sequence classification) 503
15.2.3 Seq2Seq (sequence translation) 505
15.2.4 Teacher forcing 507

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



xx CONTENTS

15.2.5 Backpropagation through time 508
15.2.6 Vanishing and exploding gradients 509
15.2.7 Gating and long term memory 510
15.2.8 Beam search 513

15.3 1d CNNs 514
15.3.1 1d CNNs for sequence classification 514
15.3.2 Causal 1d CNNs for sequence generation 515

15.4 Attention 516
15.4.1 Attention as soft dictionary lookup 517
15.4.2 Kernel regression as non-parametric attention 518
15.4.3 Parametric attention 519
15.4.4 Seq2Seq with attention 520
15.4.5 Seq2vec with attention (text classification) 521
15.4.6 Seq+Seq2Vec with attention (text pair classification) 521
15.4.7 Soft vs hard attention 523

15.5 Transformers 524
15.5.1 Self-attention 524
15.5.2 Multi-headed attention 525
15.5.3 Positional encoding 526
15.5.4 Putting it all together 527
15.5.5 Comparing transformers, CNNs and RNNs 529
15.5.6 Transformers for images * 530
15.5.7 Other transformer variants * 531

15.6 Efficient transformers * 531
15.6.1 Fixed non-learnable localized attention patterns 532
15.6.2 Learnable sparse attention patterns 533
15.6.3 Memory and recurrence methods 533
15.6.4 Low-rank and kernel methods 533

15.7 Language models and unsupervised representation learning 535
15.7.1 ELMo 536
15.7.2 BERT 536
15.7.3 GPT 540
15.7.4 T5 541
15.7.5 Discussion 541

IV Nonparametric Models 543

16 Exemplar-based Methods 545
16.1 K nearest neighbor (KNN) classification 545

16.1.1 Example 546
16.1.2 The curse of dimensionality 546
16.1.3 Reducing the speed and memory requirements 548
16.1.4 Open set recognition 548

16.2 Learning distance metrics 549

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xxi

16.2.1 Linear and convex methods 550
16.2.2 Deep metric learning 552
16.2.3 Classification losses 552
16.2.4 Ranking losses 553
16.2.5 Speeding up ranking loss optimization 554
16.2.6 Other training tricks for DML 557

16.3 Kernel density estimation (KDE) 558
16.3.1 Density kernels 558
16.3.2 Parzen window density estimator 559
16.3.3 How to choose the bandwidth parameter 560
16.3.4 From KDE to KNN classification 561
16.3.5 Kernel regression 561

17 Kernel Methods * 565
17.1 Mercer kernels 565

17.1.1 Mercer’s theorem 566
17.1.2 Some popular Mercer kernels 567

17.2 Gaussian processes 572
17.2.1 Noise-free observations 572
17.2.2 Noisy observations 573
17.2.3 Comparison to kernel regression 574
17.2.4 Weight space vs function space 575
17.2.5 Numerical issues 575
17.2.6 Estimating the kernel 576
17.2.7 GPs for classification 579
17.2.8 Connections with deep learning 580
17.2.9 Scaling GPs to large datasets 580

17.3 Support vector machines (SVMs) 583
17.3.1 Large margin classifiers 583
17.3.2 The dual problem 585
17.3.3 Soft margin classifiers 587
17.3.4 The kernel trick 588
17.3.5 Converting SVM outputs into probabilities 589
17.3.6 Connection with logistic regression 589
17.3.7 Multi-class classification with SVMs 590
17.3.8 How to choose the regularizer C 591
17.3.9 Kernel ridge regression 592
17.3.10 SVMs for regression 593

17.4 Sparse vector machines 595
17.4.1 Relevance vector machines (RVMs) 596
17.4.2 Comparison of sparse and dense kernel methods 596

17.5 Exercises 599

18 Trees, Forests, Bagging, and Boosting 601
18.1 Classification and regression trees (CART) 601

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



xxii CONTENTS

18.1.1 Model definition 601
18.1.2 Model fitting 603
18.1.3 Regularization 604
18.1.4 Handling missing input features 604
18.1.5 Pros and cons 604

18.2 Ensemble learning 606
18.2.1 Stacking 606
18.2.2 Ensembling is not Bayes model averaging 607

18.3 Bagging 607
18.4 Random forests 608
18.5 Boosting 609

18.5.1 Forward stagewise additive modeling 610
18.5.2 Quadratic loss and least squares boosting 610
18.5.3 Exponential loss and AdaBoost 611
18.5.4 LogitBoost 614
18.5.5 Gradient boosting 614

18.6 Interpreting tree ensembles 618
18.6.1 Feature importance 619
18.6.2 Partial dependency plots 621

V Beyond Supervised Learning 623

19 Learning with Fewer Labeled Examples 625
19.1 Data augmentation 625

19.1.1 Examples 625
19.1.2 Theoretical justification 626

19.2 Transfer learning 626
19.2.1 Fine-tuning 627
19.2.2 Adapters 628
19.2.3 Supervised pre-training 629
19.2.4 Unsupervised pre-training (self-supervised learning) 630
19.2.5 Domain adaptation 635

19.3 Semi-supervised learning 636
19.3.1 Self-training and pseudo-labeling 636
19.3.2 Entropy minimization 637
19.3.3 Co-training 640
19.3.4 Label propagation on graphs 641
19.3.5 Consistency regularization 642
19.3.6 Deep generative models * 644
19.3.7 Combining self-supervised and semi-supervised learning 647

19.4 Active learning 648
19.4.1 Decision-theoretic approach 648
19.4.2 Information-theoretic approach 648
19.4.3 Batch active learning 649

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xxiii

19.5 Meta-learning 649
19.5.1 Model-agnostic meta-learning (MAML) 650

19.6 Few-shot learning 651
19.6.1 Matching networks 651

19.7 Weakly supervised learning 653
19.8 Exercises 653

20 Dimensionality Reduction 655
20.1 Principal components analysis (PCA) 655

20.1.1 Examples 655
20.1.2 Derivation of the algorithm 657
20.1.3 Computational issues 660
20.1.4 Choosing the number of latent dimensions 662

20.2 Factor analysis * 664
20.2.1 Generative model 665
20.2.2 Probabilistic PCA 666
20.2.3 EM algorithm for FA/PPCA 667
20.2.4 Unidentifiability of the parameters 669
20.2.5 Nonlinear factor analysis 671
20.2.6 Mixtures of factor analysers 672
20.2.7 Exponential family factor analysis 673
20.2.8 Factor analysis models for paired data 675

20.3 Autoencoders 677
20.3.1 Bottleneck autoencoders 678
20.3.2 Denoising autoencoders 679
20.3.3 Contractive autoencoders 680
20.3.4 Sparse autoencoders 681
20.3.5 Variational autoencoders 681

20.4 Manifold learning * 687
20.4.1 What are manifolds? 687
20.4.2 The manifold hypothesis 687
20.4.3 Approaches to manifold learning 688
20.4.4 Multi-dimensional scaling (MDS) 689
20.4.5 Isomap 692
20.4.6 Kernel PCA 692
20.4.7 Maximum variance unfolding (MVU) 694
20.4.8 Local linear embedding (LLE) 695
20.4.9 Laplacian eigenmaps 696
20.4.10 t-SNE 699

20.5 Word embeddings 703
20.5.1 Latent semantic analysis / indexing 703
20.5.2 Word2vec 705
20.5.3 GloVE 707
20.5.4 Word analogies 708
20.5.5 RAND-WALK model of word embeddings 709

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



xxiv CONTENTS

20.5.6 Contextual word embeddings 710
20.6 Exercises 710

21 Clustering 713
21.1 Introduction 713

21.1.1 Evaluating the output of clustering methods 713
21.2 Hierarchical agglomerative clustering 715

21.2.1 The algorithm 716
21.2.2 Example 718
21.2.3 Extensions 719

21.3 K means clustering 720
21.3.1 The algorithm 720
21.3.2 Examples 720
21.3.3 Vector quantization 722
21.3.4 The K-means++ algorithm 723
21.3.5 The K-medoids algorithm 723
21.3.6 Speedup tricks 724
21.3.7 Choosing the number of clusters K 724

21.4 Clustering using mixture models 727
21.4.1 Mixtures of Gaussians 728
21.4.2 Mixtures of Bernoullis 731

21.5 Spectral clustering * 732
21.5.1 Normalized cuts 732
21.5.2 Eigenvectors of the graph Laplacian encode the clustering 733
21.5.3 Example 734
21.5.4 Connection with other methods 735

21.6 Biclustering * 735
21.6.1 Basic biclustering 736
21.6.2 Nested partition models (Crosscat) 736

22 Recommender Systems 739
22.1 Explicit feedback 739

22.1.1 Datasets 739
22.1.2 Collaborative filtering 740
22.1.3 Matrix factorization 741
22.1.4 Autoencoders 743

22.2 Implicit feedback 745
22.2.1 Bayesian personalized ranking 745
22.2.2 Factorization machines 746
22.2.3 Neural matrix factorization 747

22.3 Leveraging side information 747
22.4 Exploration-exploitation tradeoff 748

23 Graph Embeddings * 751
23.1 Introduction 751

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



CONTENTS xxv

23.2 Graph Embedding as an Encoder/Decoder Problem 752
23.3 Shallow graph embeddings 754

23.3.1 Unsupervised embeddings 755
23.3.2 Distance-based: Euclidean methods 755
23.3.3 Distance-based: non-Euclidean methods 756
23.3.4 Outer product-based: Matrix factorization methods 756
23.3.5 Outer product-based: Skip-gram methods 757
23.3.6 Supervised embeddings 759

23.4 Graph Neural Networks 760
23.4.1 Message passing GNNs 760
23.4.2 Spectral Graph Convolutions 761
23.4.3 Spatial Graph Convolutions 761
23.4.4 Non-Euclidean Graph Convolutions 763

23.5 Deep graph embeddings 763
23.5.1 Unsupervised embeddings 764
23.5.2 Semi-supervised embeddings 766

23.6 Applications 767
23.6.1 Unsupervised applications 767
23.6.2 Supervised applications 769

A Notation 771
A.1 Introduction 771
A.2 Common mathematical symbols 771
A.3 Functions 772

A.3.1 Common functions of one argument 772
A.3.2 Common functions of two arguments 772
A.3.3 Common functions of > 2 arguments 772

A.4 Linear algebra 773
A.4.1 General notation 773
A.4.2 Vectors 773
A.4.3 Matrices 773
A.4.4 Matrix calculus 774

A.5 Optimization 774
A.6 Probability 775
A.7 Information theory 775
A.8 Statistics and machine learning 776

A.8.1 Supervised learning 776
A.8.2 Unsupervised learning and generative models 776
A.8.3 Bayesian inference 776

A.9 Abbreviations 777

Index 779

Bibliography 796

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license





Preface

In 2012, I published a 1200-page book called Machine Learning: A Probabilistic Perspective, which
provided a fairly comprehensive coverage of the field of machine learning (ML) at that time, under
the unifying lens of probabilistic modeling. The book was well received, and won the De Groot prize
in 2013.

The year 2012 is also generally considered the start of the “deep learning revolution”. The term
“deep learning” refers to a branch of ML that is based on neural networks (DNNs), which are nonlinear
functions with many layers of processing (hence the term “deep”). Although this basic technology had
been around for many years, it was in 2012 when [KSH12] used DNNs to win the ImageNet image
classification challenge by such a large margin that it caught the attention of the wider community.
Related advances on other hard problems, such as speech recognition, appeared around the same time
(see e.g., [Cir+10; Cir+11; Hin+12]). These breakthroughs were enabled by advances in hardware
technology (in particular, the repurposing of fast graphics processing units (GPUs) from video games
to ML), data collection technology (in particular, the use of crowd sourcing tools, such as Amazon’s
Mechanical Turk platform, to collect large labeled datasets, such as ImageNet), as well as various
new algorithmic ideas, some of which we cover in this book.

Since 2012, the field of deep learning has exploded, with new advances coming at an increasing
pace. Interest in the field has also grown rapidly, fueled by the commercial success of the technology,
and the breadth of applications to which it can be applied. Therefore, in 2018, I decided to write a
second edition of my book, to attempt to summarize some of this progress.

By March 2020, my draft of the second edition had swollen to about 1600 pages, and I still had
many topics left to cover. As a result, MIT Press told me I would need to split the book into two
volumes. Then the COVID-19 pandemic struck. I decided to pivot away from book writing, and to
help develop the risk score algorithm for Google’s exposure notification app [MKS21] as well as to
assist with various forecasting projects [Wah+22]. However, by the Fall of 2020, I decided to return
to working on the book.

To make up for lost time, I asked several colleagues to help me finish by writing various sections (see
acknowledgements below). The result of all this is two new books, “Probabilistic Machine Learning:
An Introduction”, which you are currently reading, and “Probabilistic Machine Learning: Advanced
Topics”, which is the sequel to this book [Mur23]. Together these two books attempt to present a
fairly broad coverage of the field of ML c. 2021, using the same unifying lens of probabilistic modeling
and Bayesian decision theory that I used in the 2012 book.

Nearly all of the content from the 2012 book has been retained, but it is now split fairly evenly
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between the two new books. In addition, each new book has lots of fresh material, covering topics from
deep learning, as well as advances in other parts of the field, such as generative models, variational
inference and reinforcement learning.

To make this introductory book more self-contained and useful for students, I have added some
background material, on topics such as optimization and linear algebra, that was omitted from the
2012 book due to lack of space. Advanced material, that can be skipped during an introductory
level course, is denoted by an asterisk * in the section or chapter title. Exercises can be found
at the end of some chapters. Solutions to exercises marked with an asterisk * are available to
qualified instructors by contacting MIT Press; solutions to all other exercises can be found online at
probml.github.io/book1, along with additional teaching material (e.g., figures and slides).

Another major change is that all of the software now uses Python instead of Matlab. (In the
future, we may create a Julia version of the code.) The new code leverages standard Python libraries,
such as NumPy, Scikit-learn, JAX, PyTorch, TensorFlow, PyMC, etc.

If a figure caption says “Generated by iris_plot.ipynb”, then you can find the corresponding
Jupyter notebook at probml.github.io/notebooks#iris_plot.ipynb. Clicking on the figure link in the
pdf version of the book will take you to this list of notebooks. Clicking on the notebook link will
open it inside Google Colab, which will let you easily reproduce the figure for yourself, and modify
the underlying source code to gain a deeper understanding of the methods. (Colab gives you access
to a free GPU, which is useful for some of the more computationally heavy demos.)

Acknowledgements
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1 Introduction

1.1 What is machine learning?

A popular definition of machine learning or ML, due to Tom Mitchell [Mit97], is as follows:

A computer program is said to learn from experience E with respect to some class of tasks T,
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

Thus there are many different kinds of machine learning, depending on the nature of the tasks T we
wish the system to learn, the nature of the performance measure P we use to evaluate the system,
and the nature of the training signal or experience E we give it.

In this book, we will cover the most common types of ML, but from a probabilistic perspective.
Roughly speaking, this means that we treat all unknown quantities (e.g., predictions about the
future value of some quantity of interest, such as tomorrow’s temperature, or the parameters of some
model) as random variables, that are endowed with probability distributions which describe a
weighted set of possible values the variable may have. (See Chapter 2 for a quick refresher on the
basics of probability, if necessary.)

There are two main reasons we adopt a probabilistic approach. First, it is the optimal approach to
decision making under uncertainty, as we explain in Section 5.1. Second, probabilistic modeling
is the language used by most other areas of science and engineering, and thus provides a unifying
framework between these fields. As Shakir Mohamed, a researcher at DeepMind, put it:1

Almost all of machine learning can be viewed in probabilistic terms, making probabilistic
thinking fundamental. It is, of course, not the only view. But it is through this view that we
can connect what we do in machine learning to every other computational science, whether that
be in stochastic optimisation, control theory, operations research, econometrics, information
theory, statistical physics or bio-statistics. For this reason alone, mastery of probabilistic
thinking is essential.

1.2 Supervised learning

The most common form of ML is supervised learning. In this problem, the task T is to learn
a mapping f from inputs x 2 X to outputs y 2 Y. The inputs x are also called the features,

1. Source: Slide 2 of https://bit.ly/3pyHyPn
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(a) (b) (c)

Figure 1.1: Three types of Iris flowers: Setosa, Versicolor and Virginica. Used with kind permission of Dennis
Kramb and SIGNA.

index sl sw pl pw label
0 5.1 3.5 1.4 0.2 Setosa
1 4.9 3.0 1.4 0.2 Setosa

· · ·
50 7.0 3.2 4.7 1.4 Versicolor

· · ·
149 5.9 3.0 5.1 1.8 Virginica

Table 1.1: A subset of the Iris design matrix. The features are: sepal length, sepal width, petal length, petal
width. There are 50 examples of each class.

covariates, or predictors; this is often a fixed-dimensional vector of numbers, such as the height
and weight of a person, or the pixels in an image. In this case, X = R

D, where D is the dimensionality
of the vector (i.e., the number of input features). The output y is also known as the label, target, or
response.2 The experience E is given in the form of a set of N input-output pairs D = {(xn, yn)}

N

n=1
,

known as the training set. (N is called the sample size.) The performance measure P depends
on the type of output we are predicting, as we discuss below.

1.2.1 Classification

In classification problems, the output space is a set of C unordered and mutually exclusive labels
known as classes, Y = {1, 2, . . . , C}. The problem of predicting the class label given an input is
also called pattern recognition. (If there are just two classes, often denoted by y 2 {0, 1} or
y 2 {�1, +1}, it is called binary classification.)

1.2.1.1 Example: classifying Iris flowers

As an example, consider the problem of classifying Iris flowers into their 3 subspecies, Setosa,
Versicolor and Virginica. Figure 1.1 shows one example of each of these classes.

2. Sometimes (e.g., in the statsmodels Python package) x are called the exogenous variables and y are called the
endogenous variables.
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Figure 1.2: Illustration of the image classification problem. From https: // cs231n. github. io/ . Used with
kind permission of Andrej Karpathy.

In image classification, the input space X is the set of images, which is a very high-dimensional
space: for a color image with C = 3 channels (e.g., RGB) and D1 ⇥ D2 pixels, we have X = R

D,
where D = C ⇥D1 ⇥D2. (In practice we represent each pixel intensity with an integer, typically from
the range {0, 1, . . . , 255}, but we assume real valued inputs for notational simplicity.) Learning a
mapping f : X ! Y from images to labels is quite challenging, as illustrated in Figure 1.2. However,
it can be tackled using certain kinds of functions, such as a convolutional neural network or
CNN, which we discuss in Section 14.1.

Fortunately for us, some botanists have already identified 4 simple, but highly informative, numeric
features — sepal length, sepal width, petal length, petal width — which can be used to distinguish
the three kinds of Iris flowers. In this section, we will use this much lower-dimensional input space,
X = R

4, for simplicity. The Iris dataset is a collection of 150 labeled examples of Iris flowers, 50 of
each type, described by these 4 features. It is widely used as an example, because it is small and
simple to understand. (We will discuss larger and more complex datasets later in the book.)

When we have small datasets of features, it is common to store them in an N ⇥D matrix, in which
each row represents an example, and each column represents a feature. This is known as a design
matrix; see Table 1.1 for an example.3

The Iris dataset is an example of tabular data. When the inputs are of variable size (e.g.,
sequences of words, or social networks), rather than fixed-length vectors, the data is usually stored

3. This particular design matrix has N = 150 rows and D = 4 columns, and hence has a tall and skinny shape, since
N � D. By contrast, some datasets (e.g., genomics) have more features than examples, D � N ; their design matrices
are short and fat. The term “big data” usually means that N is large, whereas the term “wide data” means that
D is large (relative to N).

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



4 Chapter 1. Introduction

Figure 1.3: Visualization of the Iris data as a pairwise scatter plot. On the diagonal we plot the marginal
distribution of each feature for each class. The off-diagonals contain scatterplots of all possible pairs of
features. Generated by iris_plot.ipynb

in some other format rather than in a design matrix. However, such data is often converted to a
fixed-sized feature representation (a process known as featurization), thus implicitly creating a
design matrix for further processing. We give an example of this in Section 1.5.4.1, where we discuss
the “bag of words” representation for sequence data.

1.2.1.2 Exploratory data analysis

Before tackling a problem with ML, it is usually a good idea to perform exploratory data analysis,
to see if there are any obvious patterns (which might give hints on what method to choose), or any
obvious problems with the data (e.g., label noise or outliers).

For tabular data with a small number of features, it is common to make a pair plot, in which
panel (i, j) shows a scatter plot of variables i and j, and the diagonal entries (i, i) show the marginal
density of variable i; all plots are optionally color coded by class label — see Figure 1.3 for an
example.

For higher-dimensional data, it is common to first perform dimensionality reduction, and then

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023
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(a) (b)

Figure 1.4: Example of a decision tree of depth 2 applied to the Iris data, using just the petal length and petal
width features. Leaf nodes are color coded according to the predicted class. The number of training samples
that pass from the root to a node is shown inside each box; we show how many values of each class fall into
this node. This vector of counts can be normalized to get a distribution over class labels for each node. We
can then pick the majority class. Adapted from Figures 6.1 and 6.2 of [Gér19]. Generated by iris_dtree.ipynb.

to visualize the data in 2d or 3d. We discuss methods for dimensionality reduction in Chapter 20.

1.2.1.3 Learning a classifier

From Figure 1.3, we can see that the Setosa class is easy to distinguish from the other two classes.
For example, suppose we create the following decision rule:

f(x; ✓) =

(
Setosa if petal length < 2.45

Versicolor or Virginica otherwise
(1.1)

This is a very simple example of a classifier, in which we have partitioned the input space into two
regions, defined by the one-dimensional (1d) decision boundary at xpetal length = 2.45. Points
lying to the left of this boundary are classified as Setosa; points to the right are either Versicolor or
Virginica.

We see that this rule perfectly classifies the Setosa examples, but not the Virginica and Versicolor
ones. To improve performance, we can recursively partition the space, by splitting regions in which
the classifier makes errors. For example, we can add another decision rule, to be applied to inputs
that fail the first test, to check if the petal width is below 1.75cm (in which case we predict Versicolor)
or above (in which case we predict Virginica). We can arrange these nested rules into a tree structure,

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license



6 Chapter 1. Introduction

Estimate
Setosa Versicolor Virginica

Truth
Setosa 0 1 1

Versicolor 1 0 1
Virginica 10 10 0

Table 1.2: Hypothetical asymmetric loss matrix for Iris classification.

called a decision tree, as shown in Figure 1.4a This induces the 2d decision surface shown in
Figure 1.4b.

We can represent the tree by storing, for each internal node, the feature index that is used, as well
as the corresponding threshold value. We denote all these parameters by ✓. We discuss how to
learn these parameters in Section 18.1.

1.2.1.4 Empirical risk minimization

The goal of supervised learning is to automatically come up with classification models such as the
one shown in Figure 1.4a, so as to reliably predict the labels for any given input. A common way to
measure performance on this task is in terms of the misclassification rate on the training set:

L(✓) , 1

N

NX

n=1

I (yn 6= f(xn; ✓)) (1.2)

where I (e) is the binary indicator function, which returns 1 iff (if and only if) the condition e is
true, and returns 0 otherwise, i.e.,

I (e) =

⇢
1 if e is true
0 if e is false (1.3)

This assumes all errors are equal. However it may be the case that some errors are more costly
than others. For example, suppose we are foraging in the wilderness and we find some Iris flowers.
Furthermore, suppose that Setosa and Versicolor are tasty, but Virginica is poisonous. In this case,
we might use the asymmetric loss function `(y, ŷ) shown in Table 1.2.

We can then define empirical risk to be the average loss of the predictor on the training set:

L(✓) , 1

N

NX

n=1

`(yn, f(xn; ✓)) (1.4)

We see that the misclassification rate Equation (1.2) is equal to the empirical risk when we use
zero-one loss for comparing the true label with the prediction:

`01(y, ŷ) = I (y 6= ŷ) (1.5)

See Section 5.1 for more details.
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One way to define the problem of model fitting or training is to find a setting of the parameters
that minimizes the empirical risk on the training set:

✓̂ = argmin
✓

L(✓) = argmin
✓

1

N

NX

n=1

`(yn, f(xn; ✓)) (1.6)

This is called empirical risk minimization.
However, our true goal is to minimize the expected loss on future data that we have not yet

seen. That is, we want to generalize, rather than just do well on the training set. We discuss this
important point in Section 1.2.3.

1.2.1.5 Uncertainty

[We must avoid] false confidence bred from an ignorance of the probabilistic nature of the
world, from a desire to see black and white where we should rightly see gray. — Immanuel
Kant, as paraphrased by Maria Konnikova [Kon20].

In many cases, we will not be able to perfectly predict the exact output given the input, due to
lack of knowledge of the input-output mapping (this is called epistemic uncertainty or model
uncertainty), and/or due to intrinsic (irreducible) stochasticity in the mapping (this is called
aleatoric uncertainty or data uncertainty).

Representing uncertainty in our prediction can be important for various applications. For example,
let us return to our poisonous flower example, whose loss matrix is shown in Table 1.2. If we predict
the flower is Virginica with high probability, then we should not eat the flower. Alternatively, we
may be able to perform an information gathering action, such as performing a diagnostic test, to
reduce our uncertainty. For more information about how to make optimal decisions in the presence
of uncertainty, see Section 5.1.

We can capture our uncertainty using the following conditional probability distribution:

p(y = c|x; ✓) = fc(x; ✓) (1.7)

where f : X ! [0, 1]
C maps inputs to a probability distribution over the C possible output labels.

Since fc(x; ✓) returns the probability of class label c, we require 0  fc  1 for each c, and
P

C

c=1
fc = 1.

To avoid this restriction, it is common to instead require the model to return unnormalized log-
probabilities. We can then convert these to probabilities using the softmax function, which is
defined as follows

softmax(a) ,
"

ea1

P
C

c0=1
eac0

, . . . ,
eaC

P
C

c0=1
eac0

#
(1.8)

This maps R
C to [0, 1]

C , and satisfies the constraints that 0  softmax(a)c  1 and
P

C

c=1
softmax(a)c =

1. The inputs to the softmax, a = f(x; ✓), are called logits. See Section 2.5.2 for details. We thus
define the overall model as follows:

p(y = c|x; ✓) = softmaxc(f(x; ✓)) (1.9)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license
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A common special case of this arises when f is an affine function of the form

f(x; ✓) = b + wTx = b + w1x1 + w2x2 + · · · + wDxD (1.10)

where ✓ = (b, w) are the parameters of the model. This model is called logistic regression, and
will be discussed in more detail in Chapter 10.

In statistics, the w parameters are usually called regression coefficients (and are typically
denoted by �) and b is called the intercept. In ML, the parameters w are called the weights and b
is called the bias. This terminology arises from electrical engineering, where we view the function f
as a circuit which takes in x and returns f(x). Each input is fed to the circuit on “wires”, which
have weights w. The circuit computes the weighted sum of its inputs, and adds a constant bias or
offset term b. (This use of the term “bias” should not be confused with the statistical concept of bias
discussed in Section 4.7.6.1.)

To reduce notational clutter, it is common to absorb the bias term b into the weights w by defining
w̃ = [b, w1, . . . , wD] and defining x̃ = [1, x1, . . . , xD], so that

w̃Tx̃ = b + wTx (1.11)

This converts the affine function into a linear function. We will usually assume that this has been
done, so we can just write the prediction function as follows:

f(x; w) = wTx (1.12)

1.2.1.6 Maximum likelihood estimation

When fitting probabilistic models, it is common to use the negative log probability as our loss
function:

`(y, f(x; ✓)) = � log p(y|f(x; ✓)) (1.13)

The reasons for this are explained in Section 5.1.6.1, but the intuition is that a good model (with low
loss) is one that assigns a high probability to the true output y for each corresponding input x. The
average negative log probability of the training set is given by

NLL(✓) = �
1

N

NX

n=1

log p(yn|f(xn; ✓)) (1.14)

This is called the negative log likelihood. If we minimize this, we can compute the maximum
likelihood estimate or MLE:

✓̂mle = argmin
✓

NLL(✓) (1.15)

This is a very common way to fit models to data, as we will see.

1.2.2 Regression

Now suppose that we want to predict a real-valued quantity y 2 R instead of a class label y 2

{1, . . . , C}; this is known as regression. For example, in the case of Iris flowers, y might be the
degree of toxicity if the flower is eaten, or the average height of the plant.

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023
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Regression is very similar to classification. However, since the output is real-valued, we need to
use a different loss function. For regression, the most common choice is to use quadratic loss, or `2
loss:

`2(y, ŷ) = (y � ŷ)
2 (1.16)

This penalizes large residuals y � ŷ more than small ones.4 The empirical risk when using quadratic
loss is equal to the mean squared error or MSE:

MSE(✓) =
1

N

NX

n=1

(yn � f(xn; ✓))
2 (1.17)

Based on the discussion in Section 1.2.1.5, we should also model the uncertainty in our prediction.
In regression problems, it is common to assume the output distribution is a Gaussian or normal.
As we explain in Section 2.6, this distribution is defined by

N (y|µ, �2
) , 1

p

2⇡�2
e�

1
2�2 (y�µ)

2

(1.18)

where µ is the mean, �2 is the variance, and
p

2⇡�2 is the normalization constant needed to ensure
the density integrates to 1. In the context of regression, we can make the mean depend on the inputs
by defining µ = f(xn; ✓). We therefore get the following conditional probability distribution:

p(y|x; ✓) = N (y|f(x; ✓), �2
) (1.19)

If we assume that the variance �2 is fixed (for simplicity), the corresponding average (per-sample)
negative log likelihood becomes

NLL(✓) = �
1

N

NX

n=1

log

"✓
1

2⇡�2

◆ 1
2

exp

✓
�

1

2�2
(yn � f(xn; ✓))

2

◆#
(1.20)

=
1

2�2
MSE(✓) + const (1.21)

We see that the NLL is proportional to the MSE. Hence computing the maximum likelihood estimate
of the parameters will result in minimizing the squared error, which seems like a sensible approach to
model fitting.

1.2.2.1 Linear regression

As an example of a regression model, consider the 1d data in Figure 1.5a. We can fit this data using
a simple linear regression model of the form

f(x; ✓) = b + wx (1.22)

4. If the data has outliers, the quadratic penalty can be too severe. In such cases, it can be better to use `1 loss
instead, which is more robust. See Section 11.6 for details.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license
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(a) (b)

Figure 1.5: (a) Linear regression on some 1d data. (b) The vertical lines denote the residuals between
the observed output value for each input (blue circle) and its predicted value (red cross). The goal of
least squares regression is to pick a line that minimizes the sum of squared residuals. Generated by lin-
reg_residuals_plot.ipynb.

where w is the slope, b is the offset, and ✓ = (w, b) are all the parameters of the model. By adjusting
✓, we can minimize the sum of squared errors, shown by the vertical lines in Figure 1.5b. until we
find the least squares solution

✓̂ = argmin
✓

MSE(✓) (1.23)

See Section 11.2.2.1 for details.
If we have multiple input features, we can write

f(x; ✓) = b + w1x1 + · · · + wDxD = b + wTx (1.24)

where ✓ = (w, b). This is called multiple linear regression.
For example, consider the task of predicting temperature as a function of 2d location in a room.

Figure 1.6(a) plots the results of a linear model of the following form:

f(x; ✓) = b + w1x1 + w2x2 (1.25)

We can extend this model to use D > 2 input features (such as time of day), but then it becomes
harder to visualize.

1.2.2.2 Polynomial regression

The linear model in Figure 1.5a is obviously not a very good fit to the data. We can improve the
fit by using a polynomial regression model of degree D. This has the form f(x;w) = wT�(x),
where �(x) is a feature vector derived from the input, which has the following form:

�(x) = [1, x, x2, . . . , xD
] (1.26)
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(a) (b)

Figure 1.6: Linear and polynomial regression applied to 2d data. Vertical axis is temperature, horizontal
axes are location within a room. Data was collected by some remote sensing motes at Intel’s lab in Berkeley,
CA (data courtesy of Romain Thibaux). (a) The fitted plane has the form f̂(x) = w0 + w1x1 + w2x2. (b)
Temperature data is fitted with a quadratic of the form f̂(x) = w0 + w1x1 + w2x2 + w3x

2
1 + w4x

2
2. Generated

by linreg_2d_surface_demo.ipynb.

This is a simple example of feature preprocessing, also called feature engineering.
In Figure 1.7a, we see that using D = 2 results in a much better fit. We can keep increasing D, and

hence the number of parameters in the model, until D = N � 1; in this case, we have one parameter
per data point, so we can perfectly interpolate the data. The resulting model will have 0 MSE, as
shown in Figure 1.7c. However, intuitively the resulting function will not be a good predictor for
future inputs, since it is too “wiggly”. We discuss this in more detail in Section 1.2.3.

We can also apply polynomial regression to multi-dimensional inputs. For example, Figure 1.6(b)
plots the predictions for the temperature model after performing a quadratic expansion of the inputs

f(x; w) = w0 + w1x1 + w2x2 + w3x
2

1
+ w4x

2

2
(1.27)

The quadratic shape is a better fit to the data than the linear model in Figure 1.6(a), since it captures
the fact that the middle of the room is hotter. We can also add cross terms, such as x1x2, to capture
interaction effects. See Section 1.5.3.2 for details.

Note that the above models still use a prediction function that is a linear function of the parameters
w, even though it is a nonlinear function of the original input x. The reason this is important is
that a linear model induces an MSE loss function MSE(✓) that has a unique global optimum, as we
explain in Section 11.2.2.1.

1.2.2.3 Deep neural networks

In Section 1.2.2.2, we manually specified the transformation of the input features, namely polynomial
expansion, �(x) = [1, x1, x2, x2

1
, x2

2
, . . .]. We can create much more powerful models by learning to

do such nonlinear feature extraction automatically. If we let �(x) have its own set of parameters,
say V, then the overall model has the form

f(x; w,V) = wT�(x;V) (1.28)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license
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(a) (b)

(c) (d)

Figure 1.7: (a-c) Polynomials of degrees 2, 14 and 20 fit to 21 datapoints (the same data as in Figure 1.5).
(d) MSE vs degree. Generated by linreg_poly_vs_degree.ipynb.

We can recursively decompose the feature extractor �(x;V) into a composition of simpler functions.
The resulting model then becomes a stack of L nested functions:

f(x; ✓) = fL(fL�1(· · · (f1(x)) · · · )) (1.29)

where f`(x) = f(x;✓`) is the function at layer `. The final layer is linear and has the form
fL(x) = wT

L
x, so f(x;✓) = wT

L
f1:L�1(x), where f1:L�1(x) = fL�1(· · · (f1(x)) · · · ) is the learned

feature extractor. This is the key idea behind deep neural networks or DNNs, which includes
common variants such as convolutional neural networks (CNNs) for images, and recurrent
neural networks (RNNs) for sequences. See Part III for details.

1.2.3 Overfitting and generalization

We can rewrite the empirical risk in Equation (1.4) in the following equivalent way:

L(✓; Dtrain) =
1

|Dtrain|

X

(x,y)2Dtrain

`(y, f(x; ✓)) (1.30)
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1.2. Supervised learning 13

where |Dtrain| is the size of the training set Dtrain. This formulation is useful because it makes explicit
which dataset the loss is being evaluated on.

With a suitably flexible model, we can drive the training loss to zero (assuming no label noise), by
simply memorizing the correct output for each input. For example, Figure 1.7(c) perfectly interpolates
the training data (modulo the last point on the right). But what we care about is prediction accuracy
on new data, which may not be part of the training set. A model that perfectly fits the training
data, but which is too complex, is said to suffer from overfitting.

To detect if a model is overfitting, let us assume (for now) that we have access to the true (but
unknown) distribution p⇤

(x, y) used to generate the training set. Then, instead of computing the
empirical risk we compute the theoretical expected loss or population risk

L(✓; p⇤
) , Ep⇤(x,y) [`(y, f(x; ✓))] (1.31)

The difference L(✓; p⇤
) � L(✓;Dtrain) is called the generalization gap. If a model has a large

generalization gap (i.e., low empirical risk but high population risk), it is a sign that it is overfitting.
In practice we don’t know p⇤. However, we can partition the data we do have into two subsets,

known as the training set and the test set. Then we can approximate the population risk using the
test risk:

L(✓; Dtest) ,
1

|Dtest|

X

(x,y)2Dtest

`(y, f(x; ✓)) (1.32)

As an example, in Figure 1.7d, we plot the training error and test error for polynomial regression
as a function of degree D. We see that the training error goes to 0 as the model becomes more
complex. However, the test error has a characteristic U-shaped curve: on the left, where D = 1,
the model is underfitting; on the right, where D � 1, the model is overfitting; and when D = 2,
the model complexity is “just right”.

How can we pick a model of the right complexity? If we use the training set to evaluate different
models, we will always pick the most complex model, since that will have the most degrees of
freedom, and hence will have minimum loss. So instead we should pick the model with minimum
test loss.

In practice, we need to partition the data into three sets, namely the training set, the test set and
a validation set; the latter is used for model selection, and we just use the test set to estimate
future performance (the population risk), i.e., the test set is not used for model fitting or model
selection. See Section 4.5.4 for further details.

1.2.4 No free lunch theorem

All models are wrong, but some models are useful. — George Box [BD87, p424].5

Given the large variety of models in the literature, it is natural to wonder which one is best.
Unfortunately, there is no single best model that works optimally for all kinds of problems — this
is sometimes called the no free lunch theorem [Wol96]. The reason is that a set of assumptions
(also called inductive bias) that works well in one domain may work poorly in another. The best

5. George Box is a retired statistics professor at the University of Wisconsin.
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14 Chapter 1. Introduction

way to pick a suitable model is based on domain knowledge, and/or trial and error (i.e., using model
selection techniques such as cross validation (Section 4.5.4) or Bayesian methods (Section 5.2.2 and
Section 5.2.6). For this reason, it is important to have many models and algorithmic techniques in
one’s toolbox to choose from.

1.3 Unsupervised learning

In supervised learning, we assume that each input example x in the training set has an associated
set of output targets y, and our goal is to learn the input-output mapping. Although this is useful,
and can be difficult, supervised learning is essentially just “glorified curve fitting” [Pea18].

An arguably much more interesting task is to try to “make sense of” data, as opposed to just
learning a mapping. That is, we just get observed “inputs” D = {xn : n = 1 : N} without any
corresponding “outputs” yn. This is called unsupervised learning.

From a probabilistic perspective, we can view the task of unsupervised learning as fitting an
unconditional model of the form p(x), which can generate new data x, whereas supervised learning
involves fitting a conditional model, p(y|x), which specifies (a distribution over) outputs given
inputs.6

Unsupervised learning avoids the need to collect large labeled datasets for training, which can
often be time consuming and expensive (think of asking doctors to label medical images).

Unsupervised learning also avoids the need to learn how to partition the world into often arbitrary
categories. For example, consider the task of labeling when an action, such as “drinking” or “sipping”,
occurs in a video. Is it when the person picks up the glass, or when the glass first touches the mouth,
or when the liquid pours out? What if they pour out some liquid, then pause, then pour again — is
that two actions or one? Humans will often disagree on such issues [Idr+17], which means the task is
not well defined. It is therefore not reasonable to expect machines to learn such mappings.7

Finally, unsupervised learning forces the model to “explain” the high-dimensional inputs, rather
than just the low-dimensional outputs. This allows us to learn richer models of “how the world works”.
As Geoff Hinton, who is a famous professor of ML at the University of Toronto, has said:

When we’re learning to see, nobody’s telling us what the right answers are — we just look.
Every so often, your mother says “that’s a dog”, but that’s very little information. You’d be
lucky if you got a few bits of information — even one bit per second — that way. The brain’s
visual system has O(10

14) neural connections. And you only live for O(10
9
) seconds. So it’s no

use learning one bit per second. You need more like O(10
5
) bits per second. And there’s only

one place you can get that much information: from the input itself. — Geoffrey Hinton, 1996
(quoted in [Gor06]).

1.3.1 Clustering

A simple example of unsupervised learning is the problem of finding clusters in data. The goal is to
partition the input into regions that contain “similar” points. As an example, consider a 2d version

6. In the statistics community, it is common to use x to denote exogenous variables that are not modeled, but are
simply given as inputs. Therefore an unconditional model would be denoted p(y) rather than p(x).
7. A more reasonable approach is to try to capture the probability distribution over labels produced by a “crowd” of
annotators (see e.g., [Dum+18; Aro+19]). This embraces the fact that there can be multiple “correct” labels for a
given input due to the ambiguity of the task itself.

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023
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(a) (b)

Figure 1.8: (a) A scatterplot of the petal features from the iris dataset. (b) The result of unsupervised
clustering using K = 3. Generated by iris_kmeans.ipynb.

(a) (b)

Figure 1.9: (a) Scatterplot of iris data (first 3 features). Points are color coded by class. (b) We fit a 2d
linear subspace to the 3d data using PCA. The class labels are ignored. Red dots are the original data, black
dots are points generated from the model using x̂ = Wz + µ, where z are latent points on the underlying
inferred 2d linear manifold. Generated by iris_pca.ipynb.

of the Iris dataset. In Figure 1.8a, we show the points without any class labels. Intuitively there
are at least two clusters in the data, one in the bottom left and one in the top right. Furthermore,
if we assume that a “good” set of clusters should be fairly compact, then we might want to split
the top right into (at least) two subclusters. The resulting partition into three clusters is shown
in Figure 1.8b. (Note that there is no correct number of clusters; instead, we need to consider the
tradeoff between model complexity and fit to the data. We discuss ways to make this tradeoff in
Section 21.3.7.)

1.3.2 Discovering latent “factors of variation”

When dealing with high-dimensional data, it is often useful to reduce the dimensionality by projecting
it to a lower dimensional subspace which captures the “essence” of the data. One approach to this
problem is to assume that each observed high-dimensional output xn 2 R

D was generated by a set
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16 Chapter 1. Introduction

of hidden or unobserved low-dimensional latent factors zn 2 R
K . We can represent the model

diagrammatically as follows: zn ! xn, where the arrow represents causation. Since we don’t know
the latent factors zn, we often assume a simple prior probability model for p(zn) such as a Gaussian,
which says that each factor is a random K-dimensional vector. If the data is real-valued, we can use
a Gaussian likelihood as well.

The simplest example is when we use a linear model, p(xn|zn;✓) = N (xn|Wzn + µ,⌃). The
resulting model is called factor analysis (FA). It is similar to linear regression, except we only
observe the outputs xn, and not the inputs zn. In the special case that ⌃ = �2I, this reduces to
a model called probabilistic principal components analysis (PCA), which we will explain in
Section 20.1. In Figure 1.9, we give an illustration of how this method can find a 2d linear subspace
when applied to some simple 3d data.

Of course, assuming a linear mapping from zn to xn is very restrictive. However, we can create
nonlinear extensions by defining p(xn|zn;✓) = N (xn|f(zn;✓), �2I), where f(z;✓) is a nonlinear
model, such as a deep neural network. It becomes much harder to fit such a model (i.e., to estimate the
parameters ✓), because the inputs to the neural net have to be inferred, as well as the parameters of
the model. However, there are various approximate methods, such as the variational autoencoder
which can be applied (see Section 20.3.5).

1.3.3 Self-supervised learning

A recently popular approach to unsupervised learning is known as self-supervised learning. In this
approach, we create proxy supervised tasks from unlabeled data. For example, we might try to learn
to predict a color image from a grayscale image, or to mask out words in a sentence and then try to
predict them given the surrounding context. The hope is that the resulting predictor x̂1 = f(x2; ✓),
where x2 is the observed input and x̂1 is the predicted output, will learn useful features from the
data, that can then be used in standard, downstream supervised tasks. This avoids the hard problem
of trying to infer the “true latent factors” z behind the observed data, and instead relies on standard
supervised learning methods. We discuss this approach in more detail in Section 19.2.

1.3.4 Evaluating unsupervised learning

Although unsupervised learning is appealing, it is very hard to evaluate the quality of the output of
an unsupervised learning method, because there is no ground truth to compare to [TOB16].

A common method for evaluating unsupervised models is to measure the probability assigned by
the model to unseen test examples. We can do this by computing the (unconditional) negative log
likelihood of the data:

L(✓; D) = �
1

|D|

X

x2D

log p(x|✓) (1.33)

This treats the problem of unsupervised learning as one of density estimation. The idea is that a
good model will not be “surprised” by actual data samples (i.e., will assign them high probability).
Furthermore, since probabilities must sum to 1.0, if the model assigns high probability to regions of
data space where the data samples come from, it implicitly assigns low probability to the regions
where the data does not come from. Thus the model has learned to capture the typical patterns
in the data. This can be used inside of a data compression algorithm.
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(a) (b)

Figure 1.10: Examples of some control problems. (a) Space Invaders Atari game. From https: // gymnasium.

farama. org/ environments/ atari/ space_ invaders/ . (b) Controlling a humanoid robot in the MuJuCo
simulator so it walks as fast as possible without falling over. From https: // gymnasium. farama. org/

environments/ mujoco/ humanoid/ .

Unfortunately, density estimation is difficult, especially in high dimensions. Furthermore, a model
that assigns high probability to the data may not have learned useful high-level patterns (after all,
the model could just memorize all the training examples).

An alternative evaluation metric is to use the learned unsupervised representation as features or
input to a downstream supervised learning method. If the unsupervised method has discovered useful
patterns, then it should be possible to use these patterns to perform supervised learning using much
less labeled data than when working with the original features. For example, in Section 1.2.1.1, we
saw how the 4 manually defined features of iris flowers contained most of the information needed
to perform classification. We were thus able to train a classifier with nearly perfect performance
using just 150 examples. If the input was raw pixels, we would need many more examples to achieve
comparable performance (see Section 14.1). That is, we can increase the sample efficiency of
learning (i.e., reduce the number of labeled examples needed to get good performance) by first
learning a good representation.

Increased sample efficiency is a useful evaluation metric, but in many applications, especially in
science, the goal of unsupervised learning is to gain understanding, not to improve performance on
some prediction task. This requires the use of models that are interpretable, but which can also
generate or “explain” most of the observed patterns in the data. To paraphrase Plato, the goal is
to discover how to “carve nature at its joints”. Of course, evaluating whether we have successfully
discovered the true underlying structure behind some dataset often requires performing experiments
and thus interacting with the world. We discuss this topic further in Section 1.4.

1.4 Reinforcement learning

In addition to supervised and unsupervised learning, there is a third kind of ML known as reinforce-
ment learning (RL). In this class of problems, the system or agent has to learn how to interact
with its environment. This can be encoded by means of a policy a = ⇡(x), which specifies which
action to take in response to each possible input x (derived from the environment state).

For example, consider an agent that learns to play a video game, such as Atari Space Invaders (see
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18 Chapter 1. Introduction

Figure 1.11: The three types of machine learning visualized as layers of a chocolate cake. This figure (originally
from https: // bit. ly/ 2m65Vs1 ) was used in a talk by Yann LeCun at NIPS’16, and is used with his kind
permission.

Figure 1.10a). In this case, the input x is the image (or sequence of past images), and the output a
is the direction to move in (left or right) and whether to fire a missile or not. As a more complex
example, consider the problem of a robot learning to walk (see Figure 1.10b). In this case, the input
x is the set of joint positions and angles for all the limbs, and the output a is a set of actuation or
motor control signals.

The difference from supervised learning (SL) is that the system is not told which action is the
best one to take (i.e., which output to produce for a given input). Instead, the system just receives
an occasional reward (or punishment) signal in response to the actions that it takes. This is like
learning with a critic, who gives an occasional thumbs up or thumbs down, as opposed to learning
with a teacher, who tells you what to do at each step.

RL has grown in popularity recently, due to its broad applicability (since the reward signal that
the agent is trying to optimize can be any metric of interest). However, it can be harder to make RL
work than it is for supervised or unsupervised learning, for a variety of reasons. A key difficulty is
that the reward signal may only be given occasionally (e.g., if the agent eventually reaches a desired
state), and even then it may be unclear to the agent which of its many actions were responsible for
getting the reward. (Think of playing a game like chess, where there is a single win or lose signal at
the end of the game.)

To compensate for the minimal amount of information coming from the reward signal, it is common
to use other information sources, such as expert demonstrations, which can be used in a supervised
way, or unlabeled data, which can be used by an unsupervised learning system to discover the
underlying structure of the environment. This can make it feasible to learn from a limited number of
trials (interactions with the environment). As Yann LeCun put it, in an invited talk at the NIPS8

conference in 2016: “If intelligence was a cake, unsupervised learning would be the chocolate sponge,
supervised learning would be the icing, and reinforcement learning would be the cherry.” This is
illustrated in Figure 1.11.

8. NIPS stands for “Neural Information Processing Systems”. It is one of the premier ML conferences. It has recently
been renamed to NeurIPS.
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Figure 1.12: (a) Visualization of the MNIST dataset. Each image is 28⇥ 28. There are 60k training examples
and 10k test examples. We show the first 25 images from the training set. Generated by mnist_viz_tf.ipynb.
(b) Visualization of the EMNIST dataset. There are 697,932 training examples, and 116,323 test examples,
each of size 28 ⇥ 28. There are 62 classes (a-z, A-Z, 0-9). We show the first 25 images from the training set.
Generated by emnist_viz_jax.ipynb.

More information on RL can be found in the sequel to this book, [Mur23].

1.5 Data

Machine learning is concerned with fitting models to data using various algorithms. Although we
focus on the modeling and algorithm aspects, it is important to mention that the nature and quality
of the training data also plays a vital role in the success of any learned model.

In this section, we briefly describe some common image and text datasets that we will use in this
book. We also briefly discuss the topic of data preprocessing.

1.5.1 Some common image datasets

In this section, we briefly discuss some image datasets that we will use in this book.

1.5.1.1 Small image datasets

One of the simplest and most widely used is known as MNIST [LeC+98; YB19].9 This is a dataset
of 60k training images and 10k test images, each of size 28 ⇥ 28 (grayscale), illustrating handwritten
digits from 10 categories. Each pixel is an integer in the range {0, 1, . . . , 255}; these are usually
rescaled to [0, 1], to represent pixel intensity. We can optionally convert this to a binary image by
thresholding. See Figure 1.12a for an illustration.

9. The term “MNIST” stands for “Modified National Institute of Standards”; The term “modified” is used because the
images have been preprocessed to ensure the digits are mostly in the center of the image.
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(a) (b)

Figure 1.13: (a) Visualization of the Fashion-MNIST dataset [XRV17]. The dataset has the same size
as MNIST, but is harder to classify. There are 10 classes: T-shirt/top, Trouser, Pullover, Dress, Coat,
Sandal, Shirt, Sneaker, Bag, Ankle-boot. We show the first 25 images from the training set. Generated by
fashion_viz_tf.ipynb. (b) Some images from the CIFAR-10 dataset [KH09]. Each image is 32⇥ 32⇥ 3, where
the final dimension of size 3 refers to RGB. There are 50k training examples and 10k test examples. There
are 10 classes: plane, car, bird, cat, deer, dog, frog, horse, ship, and truck. We show the first 25 images from
the training set. Generated by cifar_viz_tf.ipynb.

MNIST is so widely used in the ML community that Geoff Hinton, a famous ML researcher, has
called it the “drosophila of machine learning”, since if we cannot make a method work well on MNIST,
it will likely not work well on harder datasets. However, nowadays MNIST classification is considered
“too easy”, since it is possible to distinguish most pairs of digits by looking at just a single pixel.
Various extensions have been proposed.

In [Coh+17], they proposed EMNIST (extended MNIST), that also includes lower and upper
case letters. See Figure 1.12b for a visualization. This dataset is much harder than MNIST, since
there are 62 classes, several of which are quite ambiguous (e.g., the digit 1 vs the lower case letter l).

In [XRV17], they proposed Fashion-MNIST, which has exactly the same size and shape as
MNIST, but where each image is the picture of a piece of clothing instead of a handwritten digit.
See Figure 1.13a for a visualization.

For small color images, the most common dataset is CIFAR [KH09].10 This is a dataset of 60k
images, each of size 32⇥32⇥3, representing everyday objects from 10 or 100 classes; see Figure 1.13b
for an illustration.11
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(a) (b)

Figure 1.14: (a) Sample images from the ImageNet dataset [Rus+15]. This subset consists of 1.3M color
training images, each of which is 256 ⇥ 256 pixels in size. There are 1000 possible labels, one per image, and
the task is to minimize the top-5 error rate, i.e., to ensure the correct label is within the 5 most probable
predictions. Below each image we show the true label, and a distribution over the top 5 predicted labels. If the
true label is in the top 5, its probability bar is colored red. Predictions are generated by a convolutional neural
network (CNN) called “AlexNet” (Section 14.3.2). From Figure 4 of [KSH12]. Used with kind permission of
Alex Krizhevsky. (b) Misclassification rate (top 5) on the ImageNet competition over time. Used with kind
permission of Andrej Karpathy.

1.5.1.2 ImageNet

Small datasets are useful for prototyping ideas, but it is also important to test methods on larger
datasets, both in terms of image size and number of labeled examples. The most widely used dataset
of this type is called ImageNet [Rus+15]. This is a dataset of ⇠ 14M images of size 256 ⇥ 256 ⇥ 3

illustrating various objects from 20,000 classes; see Figure 1.14a for some examples.
The ImageNet dataset was used as the basis of the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), which ran from 2010 to 2018. This used a subset of 1.3M images from 1000
classes. During the course of the competition, significant progress was made by the community, as
shown in Figure 1.14b. In particular, 2015 marked the first year in which CNNs could outperform
humans (or at least one human, namely Andrej Karpathy) at the task of classifying images from
ImageNet. Note that this does not mean that CNNs are better at vision than humans (see e.g.,
[YL21] for some common failure modes). Instead, it mostly likely reflects the fact that the dataset
makes many fine-grained classification distinctions — such as between a “tiger” and a “tiger cat”
— that humans find difficult to understand; by contrast, sufficiently flexible CNNs can learn arbitrary
patterns, including random labels [Zha+17a].

10. CIFAR stands for “Canadian Institute For Advanced Research”. This is the agency that funded labeling of
the dataset, which was derived from the TinyImages dataset at http://groups.csail.mit.edu/vision/TinyImages/
created by Antonio Torralba. See [KH09] for details.
11. Despite its popularity, the CIFAR dataset has some issues. For example, the base error on CIFAR-100 is 5.85% due
to mislabeling [NAM21]. This makes any results with accuracy above 94.15% acc suspicious. Also, 10% of CIFAR-100
training set images are duplicated in the test set [BD20].
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1. this film was just brilliant casting location scenery story direction everyone’s really suited the part they played robert
<UNK> is an amazing actor ...
2. big hair big boobs bad music and a giant safety pin these are the words to best describe this terrible movie i love cheesy
horror movies and i’ve seen hundreds...

Table 1.3: We show snippets of the first two sentences from the IMDB movie review dataset. The first example
is labeled positive and the second negative. (<UNK> refers to an unknown token.)

Although ImageNet is much harder than MNIST and CIFAR as a classification benchmark, it too
is almost “saturated” [Bey+20]. Nevertheless, relative performance of methods on ImageNet is often
a surprisingly good predictor of performance on other, unrelated image classification tasks (see e.g.,
[Rec+19]), so it remains very widely used.

1.5.2 Some common text datasets

Machine learning is often applied to text to solve a variety of tasks. This is known as natural
language processing or NLP (see e.g., [JM20] for details). Below we briefly mention a few text
datasets that we will use in this book.

1.5.2.1 Text classification

A simple NLP task is text classification, which can be used for email spam classification, senti-
ment analysis (e.g., is a movie or product review positive or negative), etc. A common dataset for
evaluating such methods is the IMDB movie review dataset from [Maa+11]. (IMDB stands for
“Internet Movie Database”.) This contains 25k labeled examples for training, and 25k for testing.
Each example has a binary label, representing a positive or negative rating. See Table 1.3 for some
example sentences.

1.5.2.2 Machine translation

A more difficult NLP task is to learn to map a sentence x in one language to a “semantically equivalent”
sentence y in another language; this is called machine translation. Training such models requires
aligned (x, y) pairs. Fortunately, several such datasets exist, e.g., from the Canadian parliament
(English-French pairs), and the European Union (Europarl). A subset of the latter, known as the
WMT dataset (Workshop on Machine Translation), consists of English-German pairs, and is widely
used as a benchmark dataset.

1.5.2.3 Other seq2seq tasks

A generalization of machine translation is to learn a mapping from one sequence x to any other
sequence y. This is called a seq2seq model, and can be viewed as a form of high-dimensional
classification (see Section 15.2.3 for details). This framing of the problem is very general, and
includes many tasks, such as document summarization, question answering, etc. For example,
Table 1.4 shows how to formulate question answering as a seq2seq problem: the input is the text T
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T: In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The
main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets
coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered
locations are called “showers”.

Q1: What causes precipitation to fall? A1: gravity
Q2: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? A2: graupel
Q3: Where do water droplets collide with ice crystals to form precipitation? A3: within a cloud

Table 1.4: Question-answer pairs for a sample passage in the SQuAD dataset. Each of the answers is a
segment of text from the passage. This can be solved using sentence pair tagging. The input is the paragraph
text T and the question Q. The output is a tagging of the relevant words in T that answer the question in Q.
From Figure 1 of [Raj+16]. Used with kind permission of Percy Liang.

and question Q, and the output is the answer A, which is a set of words, possibly extracted from the
input.

1.5.2.4 Language modeling

The rather grandiose term “language modeling” refers to the task of creating unconditional
generative models of text sequences, p(x1, . . . , xT ). This only requires input sentences x, without
any corresponding “labels” y. We can therefore think of this as a form of unsupervised learning,
which we discuss in Section 1.3. If the language model generates output in response to an input, as
in seq2seq, we can regard it as a conditional generative model.

1.5.3 Preprocessing discrete input data

Many ML models assume that the data consists of real-valued feature vectors, x 2 R
D. However,

sometimes the input may have discrete input features, such as categorical variables like race and
gender, or words from some vocabulary. In the sections below, we discuss some ways to preprocess
such data to convert it to vector form. This is a common operation that is used for many different
kinds of models.

1.5.3.1 One-hot encoding

When we have categorical features, we need to convert them to a numerical scale, so that computing
weighted combinations of the inputs makes sense. The standard way to preprocess such categorical
variables is to use a one-hot encoding, also called a dummy encoding. If a variable x has K
values, we will denote its dummy encoding as follows: one-hot(x) = [I (x = 1) , . . . , I (x = K)]. For
example, if there are 3 colors (say red, green and blue), the corresponding one-hot vectors will be
one-hot(red) = [1, 0, 0], one-hot(green) = [0, 1, 0], and one-hot(blue) = [0, 0, 1].

1.5.3.2 Feature crosses

A linear model using a dummy encoding for each categorical variable can capture the main effects
of each variable, but cannot capture interaction effects between them. For example, suppose we
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want to predict the fuel efficiency of a vehicle given two categorical input variables: the type (say
SUV, Truck, or Family car), and the country of origin (say USA or Japan). If we concatenate the
one-hot encodings for the ternary and binary features, we get the following input encoding:

�(x) = [1, I (x1 = S) , I (x1 = T ) , I (x1 = F ) , I (x2 = U) , I (x2 = J)] (1.34)

where x1 is the type and x2 is the country of origin.
This model cannot capture dependencies between the features. For example, we expect trucks to

be less fuel efficient, but perhaps trucks from the USA are even less efficient than trucks from Japan.
This cannot be captured using the linear model in Equation (1.34) since the contribution from the
country of origin is independent of the car type.

We can fix this by computing explicit feature crosses. For example, we can define a new composite
feature with 3 ⇥ 2 possible values, to capture the interaction of type and country of origin. The new
model becomes

f(x; w) = wT�(x) (1.35)
= w0 + w1I (x1 = S) + w2I (x1 = T ) + w3I (x1 = F )

+ w4I (x2 = U) + w5I (x2 = J)

+ w6I (x1 = S, x2 = U) + w7I (x1 = T, x2 = U) + w8I (x1 = F, x2 = U)

+ w9I (x1 = S, x2 = J) + w10I (x1 = T, x2 = J) + w11I (x1 = F, x2 = J) (1.36)

We can see that the use of feature crosses converts the original dataset into a wide format, with
many more columns.

1.5.4 Preprocessing text data

In Section 1.5.2, we briefly discussed text classification and other NLP tasks. To feed text data into
a classifier, we need to tackle various issues. First, documents have a variable length, and are thus
not fixed-length feature vectors, as assumed by many kinds of models. Second, words are categorical
variables with many possible values (equal to the size of the vocabulary), so the corresponding
one-hot encodings will be very high-dimensional, with no natural notion of similarity. Third, we may
encounter words at test time that have not been seen during training (so-called out-of-vocabulary
or OOV words). We discuss some solutions to these problems below. More details can be found in
e.g., [BKL10; MRS08; JM20].

1.5.4.1 Bag of words model

A simple approach to dealing with variable-length text documents is to interpret them as a bag of
words, in which we ignore word order. To convert this to a vector from a fixed input space, we first
map each word to a token from some vocabulary.

To reduce the number of tokens, we often use various pre-processing techniques such as the following:
dropping punctuation, converting all words to lower case; dropping common but uninformative words,
such as “and” and “the” (this is called stop word removal); replacing words with their base form,
such as replacing “running” and “runs” with “run” (this is called word stemming); etc. For details,
see e.g., [BL12], and for some sample code, see text_preproc_jax.ipynb.
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Figure 1.15: Example of a term-document matrix, where raw counts have been replaced by their TF-IDF
values (see Section 1.5.4.2). Darker cells are larger values. From https: // bit. ly/ 2kByLQI . Used with
kind permission of Christoph Carl Kling.

Let xnt be the token at location t in the n’th document. If there are D unique tokens in the
vocabulary, then we can represent the n’th document as a D-dimensional vector x̃n, where x̃nv is
the number of times that word v occurs in document n:

x̃nv =

TX

t=1

I (xnt = v) (1.37)

where T is the length of document n. We can now interpret documents as vectors in R
D. This is

called the vector space model of text [SWY75; TP10].
We traditionally store input data in an N ⇥D design matrix denoted by X, where D is the number

of features. In the context of vector space models, it is more common to represent the input data
as a D ⇥ N term frequency matrix, where TFij is the frequency of term i in document j. See
Figure 1.15 for an illustration.

1.5.4.2 TF-IDF

One problem with representing documents as word count vectors is that frequent words may have
undue influence, just because the magnitude of their word count is higher, even if they do not carry
much semantic content. A common solution to this is to transform the counts by taking logs, which
reduces the impact of words that occur many times within a single document.

To reduce the impact of words that occur many times in general (across all documents), we compute
a quantity called the inverse document frequency, defined as follows: IDFi , log

N

1+DFi
, where

DFi is the number of documents with term i. We can combine these transformations to compute the
TF-IDF matrix as follows:

TFIDFij = log(TFij + 1) ⇥ IDFi (1.38)

(We often normalize each row as well.) This provides a more meaningful representation of documents,
and can be used as input to many ML algorithms. See tfidf_demo.ipynb for an example.
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1.5.4.3 Word embeddings

Although the TF-IDF transformation improves on raw count vectors by placing more weight on
“informative” words and less on “uninformative” words, it does not solve the fundamental problem with
the one-hot encoding (from which count vectors are derived), which is that that semantically similar
words, such as “man” and “woman”, may be not be any closer (in vector space) than semantically
dissimilar words, such as “man” and “banana”. Thus the assumption that points that are close in
input space should have similar outputs, which is implicitly made by most prediction models, is
invalid.

The standard way to solve this problem is to use word embeddings, in which we map each sparse
one-hot vector, xnt 2 {0, 1}

V , to a lower-dimensional dense vector, ent 2 R
K using ent = Exnt,

where E 2 R
K⇥V is learned such that semantically similar words are placed close by. There are many

ways to learn such embeddings, as we discuss in Section 20.5.
Once we have an embedding matrix, we can represent a variable-length text document as a bag of

word embeddings. We can then convert this to a fixed length vector by summing (or averaging)
the embeddings:

en =

TX

t=1

ent = Ex̃n (1.39)

where x̃n is the bag of words representation from Equation (1.37). We can then use this inside of a
logistic regression classifier, which we briefly introduced in Section 1.2.1.5. The overall model has the
form

p(y = c|xn, ✓) = softmaxc(WEx̃n) (1.40)

We often use a pre-trained word embedding matrix E, in which case the model is linear in W,
which simplifies parameter estimation (see Chapter 10). See also Section 15.7 for a discussion of
contextual word embeddings.

1.5.4.4 Dealing with novel words

At test time, the model may encounter a completely novel word that it has not seen before. This is
known as the out of vocabulary or OOV problem. Such novel words are bound to occur, because
the set of words is an open class. For example, the set of proper nouns (names of people and places)
is unbounded.

A standard heuristic to solve this problem is to replace all novel words with the special symbol
UNK, which stands for “unknown”. However, this loses information. For example, if we encounter
the word “athazagoraphobia”, we may guess it means “fear of something”, since phobia is a common
suffix in English (derived from Greek) to mean “fear of”. (It turns out that athazagoraphobia means
“fear of being forgotten about or ignored”.)

We could work at the character level, but this would require the model to learn how to group
common letter combinations together into words. It is better to leverage the fact that words have
substructure, and then to take as input subword units or wordpieces [SHB16; Wu+16]; these
are often created using a method called byte-pair encoding [Gag94], which is a form of data
compression that creates new symbols to represent common substrings.
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1.5.5 Handling missing data

Sometimes we may have missing data, in which parts of the input x or output y may be unknown.
If the output is unknown during training, the example is unlabeled; we consider such semi-supervised
learning scenarios in Section 19.3. We therefore focus on the case where some of the input features
may be missing, either at training or testing time, or both.

To model this, let M be an N ⇥ D matrix of binary variables, where Mnd = 1 if feature d in
example n is missing, and Mnd = 0 otherwise. Let Xv be the visible parts of the input feature matrix,
corresponding to Mnd = 0, and Xh be the missing parts, corresponding to Mnd = 1. Let Y be the
output label matrix, which we assume is fully observed. If we assume p(M|Xv,Xh,Y) = p(M), we
say the data is missing completely at random or MCAR, since the missingness does not depend
on the hidden or observed features. If we assume p(M|Xv,Xh,Y) = p(M|Xv,Y), we say the data is
missing at random or MAR, since the missingness does not depend on the hidden features, but
may depend on the visible features. If neither of these assumptions hold, we say the data is not
missing at random or NMAR.

In the MCAR and MAR cases, we can ignore the missingness mechanism, since it tells us nothing
about the hidden features. However, in the NMAR case, we need to model the missing data
mechanism, since the lack of information may be informative. For example, the fact that someone
did not fill out an answer to a sensitive question on a survey (e.g., “Do you have COVID?”) could be
informative about the underlying value. See e.g., [LR87; Mar08] for more information on missing
data models.

In this book, we will always make the MAR assumption. However, even with this assumption, we
cannot directly use a discriminative model, such as a DNN, when we have missing input features,
since the input x will have some unknown values.

A common heuristic is called mean value imputation, in which missing values are replaced by
their empirical mean. More generally, we can fit a generative model to the input, and use that to fill
in the missing values. We briefly discuss some suitable generative models for this task in Chapter 20,
and in more detail in the sequel to this book, [Mur23].

1.6 Discussion

In this section, we situate ML and this book into a larger context.

1.6.1 The relationship between ML and other fields

There are several subcommunities that work on ML-related topics, each of which have different names.
The field of predictive analytics is similar to supervised learning (in particular, classification
and regression), but focuses more on business applications. Data mining covers both supervised
and unsupervised machine learning, but focuses more on structured data, usually stored in large
commercial databases. Data science uses techniques from machine learning and statistics, but
also emphasizes other topics, such as data integration, data visualization, and working with domain
experts, often in an iterative feedback loop (see e.g., [BS17]). The difference between these areas is
often just one of terminology.12

12. See https://developers.google.com/machine-learning/glossary/ for a useful “ML glossary”.
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ML is also very closely related to the field of statistics. Indeed, Jerry Friedman, a famous statistics
professor at Stanford, said13

[If the statistics field had] incorporated computing methodology from its inception as a
fundamental tool, as opposed to simply a convenient way to apply our existing tools, many of
the other data related fields [such as ML] would not have needed to exist — they would have
been part of statistics. — Jerry Friedman [Fri97b]

Machine learning is also related to artificial intelligence (AI). Historically, the field of AI
assumed that we could program “intelligence” by hand (see e.g., [RN10; PM17]), but this approach
has largely failed to live up to expectations, mostly because it proved to be too hard to explicitly
encode all the knowledge such systems need. Consequently, there is renewed interest in using ML to
help an AI system acquire its own knowledge. (Indeed the connections are so close that sometimes
the terms “ML” and “AI” are used interchangeably, although this is arguably misleading [Pre21].)

1.6.2 Structure of the book

We have seen that ML is closely related to many other subjects in mathematics, statistics, computer
science, etc. It can be hard to know where to start.

In this book, we take one particular path through this interconnected landscape, using probability
theory as our unifying lens. We cover statistical foundations in Part I, supervised learning in
Part II–Part IV, and unsupervised learning in Part V. For more information on these (and other)
topics, please see the sequel to this book, [Mur23],

In addition to the book, you may find the online Python notebooks that accompany this book
helpful. See probml.github.io/book1 for details.

1.6.3 Caveats

In this book, we will see how machine learning can be used to create systems that can (attempt
to) predict outputs given inputs. These predictions can then be used to choose actions so as to
minimize expected loss. When designing such systems, it can be hard to design a loss function that
correctly specifies all of our preferences; this can result in “reward hacking” in which the machine
optimizes the reward function we give it, but then we realize that the function did not capture various
constraints or preferences that we forgot to specify [Wei76; Amo+16; D’A+20]. (This is particularly
important when tradeoffs need to be made between multiple objectives.)

Reward hacking is an example of a larger problem known as the “alignment problem” [Chr20],
which refers to the potential discrepancy between what we ask our algorithms to optimize and what
we actually want them to do for us; this has raised various concerns in the context of AI ethics
and AI safety (see e.g., [KR19; Lia20; Spe+22]). Russell [Rus19] proposes to solve this problem
by not explicitly specifying a reward function, but instead forcing the machine to infer the reward
by observing human behavior, an approach known as inverse reinforcement learning. However,
emulating current or past human behavior too closely may be undesirable, and can be biased by the
data that is available for training (see e.g., [Pau+20]).

The above view of AI, in which an “intelligent” system makes decisions on its own, without a
human in the loop, is believed by many to be the path towards “artificial general intelligence”

13. Quoted in https://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



1.6. Discussion 29

or AGI. An alternative approach is to view AI as “augmented intelligence” (sometimes called
intelligence augmentation or IA). In this paradigm, AI is a process for creating “smart tools”,
like adaptive cruise control or auto-complete in search engines; such tools maintain a human in the
decision-making loop. In this framing, systems which have AI/ML components in them are not that
different from other complex, semi-autonomous human artefacts, such as aeroplanes with autopilot,
online trading platforms or medical diagnostic systems (c.f. [Jor19; Ace]). Of course, as the AI tools
become more powerful, they can end up doing more and more on their own, making this approach
similar to AGI. However, in augmented intelligence, the goal is not to emulate or exceed human
behavior at certain tasks, but instead to help humans get stuff done more easily; this is how we treat
most other technologies [Kap16].
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2 Probability: Univariate Models

2.1 Introduction

In this chapter, we give a brief introduction to the basics of probability theory. There are many good
books that go into more detail, e.g., [GS97; BT08; Cha21].

2.1.1 What is probability?

Probability theory is nothing but common sense reduced to calculation. — Pierre Laplace,
1812

We are all comfortable saying that the probability that a (fair) coin will land heads is 50%. But
what does this mean? There are actually two different interpretations of probability. One is called
the frequentist interpretation. In this view, probabilities represent long run frequencies of events
that can happen multiple times. For example, the above statement means that, if we flip the coin
many times, we expect it to land heads about half the time.1

The other interpretation is called the Bayesian interpretation of probability. In this view, proba-
bility is used to quantify our uncertainty or ignorance about something; hence it is fundamentally
related to information rather than repeated trials [Jay03; Lin06]. In the Bayesian view, the above
statement means we believe the coin is equally likely to land heads or tails on the next toss.

One big advantage of the Bayesian interpretation is that it can be used to model our uncertainty
about one-off events that do not have long term frequencies. For example, we might want to compute
the probability that the polar ice cap will melt by 2030 CE. This event will happen zero or one times,
but cannot happen repeatedly. Nevertheless, we ought to be able to quantify our uncertainty about
this event; based on how probable we think this event is, we can decide how to take the optimal
action, as discussed in Chapter 5. We shall therefore adopt the Bayesian interpretation in this book.
Fortunately, the basic rules of probability theory are the same, no matter which interpretation is
adopted.

2.1.2 Types of uncertainty

The uncertainty in our predictions can arise for two fundamentally different reasons. The first is
due to our ignorance of the underlying hidden causes or mechanism generating our data. This is

1. Actually, the Stanford statistician (and former professional magician) Persi Diaconis has shown that a coin is about
51% likely to land facing the same way up as it started, due to the physics of the problem [DHM07].
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called epistemic uncertainty, since epistemology is the philosophical term used to describe the
study of knowledge. However, a simpler term for this is model uncertainty. The second kind of
uncertainty arises from intrinsic variability, which cannot be reduced even if we collect more data.
This is sometimes called aleatoric uncertainty [Hac75; KD09], derived from the Latin word for
“dice”, although a simpler term would be data uncertainty. As a concrete example, consider tossing
a fair coin. We might know for sure that the probability of heads is p = 0.5, so there is no epistemic
uncertainty, but we still cannot perfectly predict the outcome.

This distinction can be important for applications such as active learning. A typical strategy is to
query examples for which H(p(y|x, D)) is large (where H(p) is the entropy, discussed in Section 6.1).
However, this could be due to uncertainty about the parameters, i.e., large H(p(✓|D)), or just due to
inherent variability of the outcome, corresponding to large entropy of p(y|x, ✓). In the latter case,
there would not be much use collecting more samples, since our uncertainty would not be reduced.
See [Osb16] for further discussion of this point.

2.1.3 Probability as an extension of logic

In this section, we review the basic rules of probability, following the presentation of [Jay03], in which
we view probability as an extension of Boolean logic.

2.1.3.1 Probability of an event

We define an event, denoted by the binary variable A, as some state of the world that either holds
or does not hold. For example, A might be event “it will rain tomorrow”, or “it rained yesterday”, or
“the label is y = 1”, or “the parameter ✓ is between 1.5 and 2.0”, etc. The expression Pr(A) denotes
the probability with which you believe event A is true (or the long run fraction of times that A will
occur). We require that 0  Pr(A)  1, where Pr(A) = 0 means the event definitely will not happen,
and Pr(A) = 1 means the event definitely will happen. We write Pr(A) to denote the probability of
event A not happening; this is defined to be Pr(A) = 1 � Pr(A).

2.1.3.2 Probability of a conjunction of two events

We denote the joint probability of events A and B both happening as follows:

Pr(A ^ B) = Pr(A, B) (2.1)

If A and B are independent events, we have

Pr(A, B) = Pr(A) Pr(B) (2.2)

For example, suppose X and Y are chosen uniformly at random from the set X = {1, 2, 3, 4}. Let
A be the event that X 2 {1, 2}, and B be the event that Y 2 {3}. Then we have Pr(A, B) =

Pr(A) Pr(B) =
1

2
·

1

4
.

2.1.3.3 Probability of a union of two events

The probability of event A or B happening is given by

Pr(A _ B) = Pr(A) + Pr(B) � Pr(A ^ B) (2.3)
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If the events are mutually exclusive (so they cannot happen at the same time), we get

Pr(A _ B) = Pr(A) + Pr(B) (2.4)

For example, suppose X is chosen uniformly at random from the set X = {1, 2, 3, 4}. Let A be the
event that X 2 {1, 2} and B be the event that X 2 {3}. Then we have Pr(A _ B) =

2

4
+

1

4
.

2.1.3.4 Conditional probability of one event given another

We define the conditional probability of event B happening given that A has occurred as follows:

Pr(B|A) , Pr(A, B)

Pr(A)
(2.5)

This is not defined if Pr(A) = 0, since we cannot condition on an impossible event.

2.1.3.5 Independence of events

We say that event A is independent of event B if

Pr(A, B) = Pr(A) Pr(B) (2.6)

2.1.3.6 Conditional independence of events

We say that events A and B are conditionally independent given event C if

Pr(A, B|C) = Pr(A|C) Pr(B|C) (2.7)

This is written as A ? B|C. Events are often dependent on each other, but may be rendered
independent if we condition on the relevant intermediate variables, as we discuss in more detail later
in this chapter.

2.2 Random variables

Suppose X represents some unknown quantity of interest, such as which way a dice will land when
we roll it, or the temperature outside your house at the current time. If the value of X is unknown
and/or could change, we call it a random variable or rv. The set of possible values, denoted X , is
known as the sample space or state space. An event is a set of outcomes from a given sample
space. For example, if X represents the face of a dice that is rolled, so X = {1, 2, . . . , 6}, the event
of “seeing a 1” is denoted X = 1, the event of “seeing an odd number” is denoted X 2 {1, 3, 5}, the
event of “seeing a number between 1 and 3” is denoted 1  X  3, etc.

2.2.1 Discrete random variables

If the sample space X is finite or countably infinite, then X is called a discrete random variable.
In this case, we denote the probability of the event that X has value x by Pr(X = x). We define the
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Figure 2.1: Some discrete distributions on the state space X = {1, 2, 3, 4}. (a) A uniform distribution with
p(x = k) = 1/4. (b) A degenerate distribution (delta function) that puts all its mass on x = 1. Generated by
discrete_prob_dist_plot.ipynb.

probability mass function or pmf as a function which computes the probability of events which
correspond to setting the rv to each possible value:

p(x) , Pr(X = x) (2.8)

The pmf satisfies the properties 0  p(x)  1 and
P

x2X
p(x) = 1.

If X has a finite number of values, say K, the pmf can be represented as a list of K numbers, which
we can plot as a histogram. For example, Figure 2.1 shows two pmf’s defined on X = {1, 2, 3, 4}.
On the left we have a uniform distribution, p(x) = 1/4, and on the right, we have a degenerate
distribution, p(x) = I (x = 1), where I () is the binary indicator function. Thus the distribution in
Figure 2.1(b) represents the fact that X is always equal to the value 1. (Thus we see that random
variables can also be constant.)

2.2.2 Continuous random variables

If X 2 R is a real-valued quantity, it is called a continuous random variable. In this case, we can
no longer create a finite (or countable) set of distinct possible values it can take on. However, there
are a countable number of intervals which we can partition the real line into. If we associate events
with X being in each one of these intervals, we can use the methods discussed above for discrete
random variables. Informally speaking, we can represent the probability of X taking on a specific
real value by allowing the size of the intervals to shrink to zero, as we show below.

2.2.2.1 Cumulative distribution function (cdf)

Define the events A = (X  a), B = (X  b) and C = (a < X  b), where a < b. We have that
B = A _ C, and since A and C are mutually exclusive, the sum rules gives

Pr(B) = Pr(A) + Pr(C) (2.9)

and hence the probability of being in interval C is given by

Pr(C) = Pr(B) � Pr(A) (2.10)
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Figure 2.2: (a) Plot of the cdf for the standard normal, N (0, 1). Generated by gauss_plot.ipynb. (b)
Corresponding pdf. The shaded regions each contain ↵/2 of the probability mass. Therefore the nonshaded
region contains 1 � ↵ of the probability mass. The leftmost cutoff point is ��1(↵/2), where � is the cdf
of the Gaussian. By symmetry, the rightmost cutoff point is ��1(1 � ↵/2) = ���1(↵/2). Generated by
quantile_plot.ipynb.

In general, we define the cumulative distribution function or cdf of the rv X as follows:

P (x) , Pr(X  x) (2.11)

(Note that we use a capital P to represent the cdf.) Using this, we can compute the probability of
being in any interval as follows:

Pr(a < X  b) = P (b) � P (a) (2.12)

Cdf’s are monotonically non-decreasing functions. See Figure 2.2a for an example, where we
illustrate the cdf of a standard normal distribution, N (x|0, 1); see Section 2.6 for details.

2.2.2.2 Probability density function (pdf)

We define the probability density function or pdf as the derivative of the cdf:

p(x) , d

dx
P (x) (2.13)

(Note that this derivative does not always exist, in which case the pdf is not defined.) See Figure 2.2b
for an example, where we illustrate the pdf of a univariate Gaussian (see Section 2.6 for details).

Given a pdf, we can compute the probability of a continuous variable being in a finite interval as
follows:

Pr(a < X  b) =

Z
b

a

p(x)dx = P (b) � P (a) (2.14)

As the size of the interval gets smaller, we can write

Pr(x < X  x + dx) ⇡ p(x)dx (2.15)

Intuitively, this says the probability of X being in a small interval around x is the density at x times
the width of the interval.
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2.2.2.3 Quantiles

If the cdf P is strictly monotonically increasing, it has an inverse, called the inverse cdf, or percent
point function (ppf), or quantile function.

If P is the cdf of X, then P�1
(q) is the value xq such that Pr(X  xq) = q; this is called the q’th

quantile of P . The value P�1
(0.5) is the median of the distribution, with half of the probability

mass on the left, and half on the right. The values P�1
(0.25) and P�1

(0.75) are the lower and upper
quartiles.

For example, let � be the cdf of the Gaussian distribution N (0, 1), and �
�1 be the inverse cdf.

Then points to the left of �
�1

(↵/2) contain ↵/2 of the probability mass, as illustrated in Figure 2.2b.
By symmetry, points to the right of �

�1
(1 � ↵/2) also contain ↵/2 of the mass. Hence the central

interval (�
�1

(↵/2),��1
(1 � ↵/2)) contains 1 � ↵ of the mass. If we set ↵ = 0.05, the central 95%

interval is covered by the range

(�
�1

(0.025), ��1
(0.975)) = (�1.96, 1.96) (2.16)

If the distribution is N (µ, �2
), then the 95% interval becomes (µ � 1.96�, µ + 1.96�). This is often

approximated by writing µ ± 2�.

2.2.3 Sets of related random variables

In this section, we discuss distributions over sets of related random variables.
Suppose, to start, that we have two random variables, X and Y . We can define the joint

distribution of two random variables using p(x, y) = p(X = x, Y = y) for all possible values of
X and Y . If both variables have finite cardinality, we can represent the joint distribution as a 2d
table, all of whose entries sum to one. For example, consider the following example with two binary
variables:

p(X, Y ) Y = 0 Y = 1

X = 0 0.2 0.3
X = 1 0.3 0.2

If two variables are independent, we can represent the joint as the product of the two marginals. If
both variables have finite cardinality, we can factorize the 2d joint table into a product of two 1d
vectors, as shown in Figure 2.3.

Given a joint distribution, we define the marginal distribution of an rv as follows:

p(X = x) =

X

y

p(X = x, Y = y) (2.17)

where we are summing over all possible states of Y . This is sometimes called the sum rule or the
rule of total probability. We define p(Y = y) similarly. For example, from the above 2d table, we
see p(X = 0) = 0.2 + 0.3 = 0.5 and p(Y = 0) = 0.2 + 0.3 = 0.5. (The term “marginal” comes from
the accounting practice of writing the sums of rows and columns on the side, or margin, of a table.)

We define the conditional distribution of an rv using

p(Y = y|X = x) =
p(X = x, Y = y)

p(X = x)
(2.18)

We can rearrange this equation to get

p(x, y) = p(x)p(y|x) (2.19)
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P(X, Y) P(Y)

P(X)

=

Figure 2.3: Computing p(x, y) = p(x)p(y), where X ? Y . Here X and Y are discrete random variables; X
has 6 possible states (values) and Y has 5 possible states. A general joint distribution on two such variables
would require (6 ⇥ 5) � 1 = 29 parameters to define it (we subtract 1 because of the sum-to-one constraint).
By assuming (unconditional) independence, we only need (6 � 1) + (5 � 1) = 9 parameters to define p(x, y).

This is called the product rule.
By extending the product rule to D variables, we get the chain rule of probability:

p(x1:D) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3) . . . p(xD|x1:D�1) (2.20)

This provides a way to create a high dimensional joint distribution from a set of conditional
distributions. We discuss this in more detail in Section 3.6.

2.2.4 Independence and conditional independence

We say X and Y are unconditionally independent or marginally independent, denoted X ? Y ,
if we can represent the joint as the product of the two marginals (see Figure 2.3), i.e.,

X ? Y () p(X,Y ) = p(X)p(Y ) (2.21)

In general, we say a set of variables X1, . . . , Xn is (mutually) independent if the joint can be written
as a product of marginals for all subsets {X1, . . . , Xm} ✓ {X1, . . . , Xn}: i.e.,

p(X1, . . . , Xm) =

mY

i=1

p(Xi) (2.22)

For example, we say X1, X2, X3 are mutually independent if the following conditions hold: p(X1, X2, X3) =

p(X1)p(X2)p(X3), p(X1, X2) = p(X1)p(X2), p(X2, X3) = p(X2)p(X3), and p(X1, X3) = p(X1)p(X3).2
Unfortunately, unconditional independence is rare, because most variables can influence most other

variables. However, usually this influence is mediated via other variables rather than being direct.
We therefore say X and Y are conditionally independent (CI) given Z iff the conditional joint
can be written as a product of conditional marginals:

X ? Y | Z () p(X, Y |Z) = p(X|Z)p(Y |Z) (2.23)

2. For further discussion, see https://github.com/probml/pml-book/issues/353#issuecomment-1120327442.
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We can write this assumption as a graph X � Z � Y , which captures the intuition that all the
dependencies between X and Y are mediated via Z. By using larger graphs, we can define complex
joint distributions; these are known as graphical models, and are discussed in Section 3.6.

2.2.5 Moments of a distribution

In this section, we describe various summary statistics that can be derived from a probability
distribution (either a pdf or pmf).

2.2.5.1 Mean of a distribution

The most familiar property of a distribution is its mean, or expected value, often denoted by µ.
For continuous rv’s, the mean is defined as follows:

E [X] ,
Z

X

x p(x)dx (2.24)

If the integral is not finite, the mean is not defined; we will see some examples of this later.
For discrete rv’s, the mean is defined as follows:

E [X] ,
X

x2X

x p(x) (2.25)

However, this is only meaningful if the values of x are ordered in some way (e.g., if they represent
integer counts).

Since the mean is a linear operator, we have

E [aX + b] = aE [X] + b (2.26)

This is called the linearity of expectation.
For a set of n random variables, one can show that the expectation of their sum is as follows:

E

"
nX

i=1

Xi

#
=

nX

i=1

E [Xi] (2.27)

If they are independent, the expectation of their product is given by

E

"
nY

i=1

Xi

#
=

nY

i=1

E [Xi] (2.28)

2.2.5.2 Variance of a distribution

The variance is a measure of the “spread” of a distribution, often denoted by �2. This is defined as
follows:

V [X] , E
⇥
(X � µ)

2
⇤

=

Z
(x � µ)

2p(x)dx (2.29)

=

Z
x2p(x)dx + µ2

Z
p(x)dx � 2µ

Z
xp(x)dx = E

⇥
X2

⇤
� µ2 (2.30)
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from which we derive the useful result

E
⇥
X2

⇤
= �2

+ µ2 (2.31)

The standard deviation is defined as

std [X] ,
p

V [X] = � (2.32)

This is useful since it has the same units as X itself.
The variance of a shifted and scaled version of a random variable is given by

V [aX + b] = a2
V [X] (2.33)

If we have a set of n independent random variables, the variance of their sum is given by the sum
of their variances:

V

"
nX

i=1

Xi

#
=

nX

i=1

V [Xi] (2.34)

The variance of their product can also be derived, as follows:

V

"
nY

i=1

Xi

#
= E

"
(

Y

i

Xi)
2

#
� (E

"
Y

i

Xi

#
)
2 (2.35)

= E

"
Y

i

X2

i

#
� (

Y

i

E [Xi])
2 (2.36)

=

Y

i

E
⇥
X2

i

⇤
�

Y

i

(E [Xi])
2 (2.37)

=

Y

i

(V [Xi] + (E [Xi])
2
) �

Y

i

(E [Xi])
2 (2.38)

=

Y

i

(�2

i
+ µ2

i
) �

Y

i

µ2

i
(2.39)

2.2.5.3 Mode of a distribution

The mode of a distribution is the value with the highest probability mass or probability density:

x⇤
= argmax

x
p(x) (2.40)

If the distribution is multimodal, this may not be unique, as illustrated in Figure 2.4. Furthermore,
even if there is a unique mode, this point may not be a good summary of the distribution.

2.2.5.4 Conditional moments

When we have two or more dependent random variables, we can compute the moments of one given
knowledge of the other. For example, the law of iterated expectations, also called the law of
total expectation, tells us that

E [X] = EY [E [X|Y ]] (2.41)
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Figure 2.4: Illustration of a mixture of two 1d Gaussians, p(x) = 0.5N (x|0, 0.5) + 0.5N (x|2, 0.5). Generated
by bimodal_dist_plot.ipynb.

To prove this, let us suppose, for simplicity, that X and Y are both discrete rv’s. Then we have

EY [E [X|Y ]] = EY

"
X

x

x p(X = x|Y )

#
(2.42)

=

X

y

"
X

x

x p(X = x|Y = y)

#
p(Y = y) =

X

x,y

xp(X = x, Y = y) = E [X] (2.43)

To give a more intuitive explanation, consider the following simple example.3 Let X be the
lifetime duration of a lightbulb, and let Y be the factory the lightbulb was produced in. Suppose
E [X|Y = 1] = 5000 and E [X|Y = 2] = 4000, indicating that factory 1 produces longer lasting bulbs.
Suppose factory 1 supplies 60% of the lightbulbs, so p(Y = 1) = 0.6 and p(Y = 2) = 0.4. Then the
expected duration of a random lightbulb is given by

E [X] = E [X|Y = 1] p(Y = 1) + E [X|Y = 2] p(Y = 2) = 5000 ⇥ 0.6 + 4000 ⇥ 0.4 = 4600 (2.44)

There is a similar formula for the variance. In particular, the law of total variance, also called
the conditional variance formula, tells us that

V [X] = EY [V [X|Y ]] + VY [E [X|Y ]] (2.45)

To see this, let us define the conditional moments, µX|Y = E [X|Y ], sX|Y = E
⇥
X2

|Y
⇤
, and

�2

X|Y
= V [X|Y ] = sX|Y � µ2

X|Y
, which are functions of Y (and therefore are random quantities).

Then we have

V [X] = E
⇥
X2

⇤
� (E [X])

2
= EY

⇥
sX|Y

⇤
�

�
EY

⇥
µX|Y

⇤�2 (2.46)

= EY

h
�2

X|Y

i
+ EY

h
µ2

X|Y

i
�

�
EY

⇥
µX|Y

⇤�2 (2.47)

= EY [V [X|Y ]] + VY [µX|Y ] (2.48)

To get some intuition for these formulas, consider a mixture of K univariate Gaussians. Let
Y be the hidden indicator variable that specifies which mixture component we are using, and let

3. This example is from https://en.wikipedia.org/wiki/Law_of_total_expectation, but with modified notation.

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



2.2. Random variables 43

0 10 20

x

0

5

10
y

Dataset: I

(a)

0 10 20

x

0

5

10

y

Dataset: II

(b)

0 10 20

x

0

5

10

y

Dataset: III

(c)

0 10 20

x

0

5

10

y

Dataset: IV

(d)

Figure 2.5: Illustration of Anscombe’s quartet. All of these datasets have the same low order summary
statistics. Generated by anscombes_quartet.ipynb.

X =
P

K

y=1
⇡yN (X|µy, �y). In Figure 2.4, we have ⇡1 = ⇡2 = 0.5, µ1 = 0, µ2 = 2, �1 = �2 = 0.5.

Thus

E [V [X|Y ]] = ⇡1�
2

1
+ ⇡2�

2

2
= 0.25 (2.49)

V [E [X|Y ]] = ⇡1(µ1 � µ)
2

+ ⇡2(µ2 � µ)
2

= 0.5(0 � 1)
2

+ 0.5(2 � 1)
2

= 0.5 + 0.5 = 1 (2.50)

So we get the intuitive result that the variance of X is dominated by which centroid it is drawn from
(i.e., difference in the means), rather than the local variance around each centroid.

2.2.6 Limitations of summary statistics *

Although it is common to summarize a probability distribution (or points sampled from a distribution)
using simple statistics such as the mean and variance, this can lose a lot of information. A striking
example of this is known as Anscombe’s quartet [Ans73], which is illustrated in Figure 2.5. This
shows 4 different datasets of (x, y) pairs, all of which have identical mean, variance and correlation
coefficient ⇢ (defined in Section 3.1.2): E [x] = 9, V [x] = 11, E [y] = 7.50, V [y] = 4.12, and ⇢ = 0.816.4
However, the joint distributions p(x, y) from which these points were sampled are clearly very different.
Anscombe invented these datasets, each consisting of 10 data points, to counter the impression among
statisticians that numerical summaries are superior to data visualization [Ans73].

An even more striking example of this phenomenon is shown in Figure 2.6. This consists of a
dataset that looks like a dinosaur5, plus 11 other datasets, all of which have identical low order
statistics. This collection of datasets is called the Datasaurus Dozen [MF17]. The exact values of
the (x, y) points are available online.6 They were computed using simulated annealing, a derivative
free optimization method which we discuss in the sequel to this book, [Mur23]. (The objective

4. The maximum likelihood estimate for the variance in Equation (4.36) differs from the unbiased estimate in
Equation (4.38). For the former, we have V [x] = 10.00, V [y] = 3.75, for the latter, we have V [x] = 11.00, V [y] = 4.12.
5. This dataset was created by Alberto Cairo, and is available at http://www.thefunctionalart.com/2016/08/
download-datasaurus-never-trust-summary.html
6. https://www.autodesk.com/research/publications/same-stats-different-graphs. There are actually 13
datasets in total, including the dinosaur. We omitted the “away” dataset for visual clarity.
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Figure 2.6: Illustration of the Datasaurus Dozen. All of these datasets have the same low order summary
statistics. Adapted from Figure 1 of [MF17]. Generated by datasaurus_dozen.ipynb.

function being optimized measures deviation from the target summary statistics of the original
dinosaur, plus distance from a particular target shape.)

The same simulated annealing approach can be applied to 1d datasets, as shown in Figure 2.7. We
see that all the datasets are quite different, but they all have the same median and inter-quartile
range as shown by the central shaded part of the box plots in the middle. A better visualization
is known as a violin plot, shown on the right. This shows (two copies of) the 1d kernel density
estimate (Section 16.3) of the distribution on the vertical axis, in addition to the median and IQR
markers. This visualization is better able to distinguish differences in the distributions. However, the
technique is limited to 1d data.

2.3 Bayes’ rule

Bayes’s theorem is to the theory of probability what Pythagoras’s theorem is to geometry.
— Sir Harold Jeffreys, 1973 [Jef73].

In this section, we discuss the basics of Bayesian inference. According to the Merriam-Webster
dictionary, the term “inference” means “the act of passing from sample data to generalizations, usually
with calculated degrees of certainty”. The term “Bayesian” is used to refer to inference methods
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Figure 2.7: Illustration of 7 different datasets (left), the corresponding box plots (middle) and
violin box plots (right). From Figure 8 of https: // www. autodesk. com/ research/ publications/

same-stats-different-graphs . Used with kind permission of Justin Matejka.

that represent “degrees of certainty” using probability theory, and which leverage Bayes’ rule7, to
update the degree of certainty given data.

Bayes’ rule itself is very simple: it is just a formula for computing the probability distribution over
possible values of an unknown (or hidden) quantity H given some observed data Y = y:

p(H = h|Y = y) =
p(H = h)p(Y = y|H = h)

p(Y = y)
(2.51)

This follows automatically from the identity

p(h|y)p(y) = p(h)p(y|h) = p(h, y) (2.52)

which itself follows from the product rule of probability.
In Equation (2.51), the term p(H) represents what we know about possible values of H before

we see any data; this is called the prior distribution. (If H has K possible values, then p(H) is
a vector of K probabilities, that sum to 1.) The term p(Y |H = h) represents the distribution over
the possible outcomes Y we expect to see if H = h; this is called the observation distribution.
When we evaluate this at a point corresponding to the actual observations, y, we get the function
p(Y = y|H = h), which is called the likelihood. (Note that this is a function of h, since y is
fixed, but it is not a probability distribution, since it does not sum to one.) Multiplying the prior
distribution p(H = h) by the likelihood function p(Y = y|H = h) for each h gives the unnormalized
joint distribution p(H = h, Y = y). We can convert this into a normalized distribution by dividing
by p(Y = y), which is known as the marginal likelihood, since it is computed by marginalizing
over the unknown H:

p(Y = y) =

X

h02H

p(H = h0
)p(Y = y|H = h0

) =

X

h02H

p(H = h0, Y = y) (2.53)

7. Thomas Bayes (1702–1761) was an English mathematician and Presbyterian minister. For a discussion of whether
to spell this as Bayes rule, Bayes’ rule or Bayes’s rule, see https://bit.ly/2kDtLuK.
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Observation
0 1

Truth 0 TNR=Specificity=0.975 FPR=1-TNR=0.025
1 FNR=1-TPR=0.125 TPR=Sensitivity=0.875

Table 2.1: Likelihood function p(Y |H) for a binary observation Y given two possible hidden states H. Each
row sums to one. Abbreviations: TNR is true negative rate, TPR is true positive rate, FNR is false negative
rate, FPR is false positive rate.

Normalizing the joint distribution by computing p(H = h, Y = y)/p(Y = y) for each h gives the
posterior distribution p(H = h|Y = y); this represents our new belief state about the possible
values of H.

We can summarize Bayes rule in words as follows:

posterior / prior ⇥ likelihood (2.54)

Here we use the symbol / to denote “proportional to”, since we are ignoring the denominator, which is
just a constant, independent of H. Using Bayes rule to update a distribution over unknown values of
some quantity of interest, given relevant observed data, is called Bayesian inference, or posterior
inference. It can also just be called probabilistic inference.

Below we give some simple examples of Bayesian inference in action. We will see many more
interesting examples later in this book.

2.3.1 Example: Testing for COVID-19

Suppose you think you may have contracted COVID-19, which is an infectious disease caused by
the SARS-CoV-2 virus. You decide to take a diagnostic test, and you want to use its result to
determine if you are infected or not.

Let H = 1 be the event that you are infected, and H = 0 be the event you are not infected. Let
Y = 1 if the test is positive, and Y = 0 if the test is negative. We want to compute p(H = h|Y = y),
for h 2 {0, 1}, where y is the observed test outcome. (We will write the distribution of values,
[p(H = 0|Y = y), p(H = 1|Y = y)] as p(H|y), for brevity.) We can think of this as a form of binary
classification, where H is the unknown class label, and y is the feature vector.

First we must specify the likelihood. This quantity obviously depends on how reliable the
test is. There are two key parameters. The sensitivity (aka true positive rate) is defined as
p(Y = 1|H = 1), i.e., the probability of a positive test given that the truth is positive. The false
negative rate is defined as one minus the sensitivity. The specificity (aka true negative rate)
is defined as p(Y = 0|H = 0), i.e., the probability of a negative test given that the truth is negative.
The false positive rate is defined as one minus the specificity. We summarize all these quantities
in Table 2.1. (See Section 5.1.3.1 for more details.) Following https://nyti.ms/31MTZgV, we set
the sensitivity to 87.5% and the specificity to 97.5%.

Next we must specify the prior. The quantity p(H = 1) represents the prevalence of the
disease in the area in which you live. We set this to p(H = 1) = 0.1 (i.e., 10%), which was the
prevalence in New York City in Spring 2020. (This example was chosen to match the numbers in
https://nyti.ms/31MTZgV.)
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Now suppose you test positive. We have

p(H = 1|Y = 1) =
p(Y = 1|H = 1)p(H = 1)

p(Y = 1|H = 1)p(H = 1) + p(Y = 1|H = 0)p(H = 0)
(2.55)

=
TPR ⇥ prior

TPR ⇥ prior + FPR ⇥ (1 � prior)
(2.56)

=
0.875 ⇥ 0.1

0.875 ⇥ 0.1 + 0.025 ⇥ 0.9
= 0.795 (2.57)

So there is a 79.5% chance you are infected.
Now suppose you test negative. The probability you are infected is given by

p(H = 1|Y = 0) =
p(Y = 0|H = 1)p(H = 1)

p(Y = 0|H = 1)p(H = 1) + p(Y = 0|H = 0)p(H = 0)
(2.58)

=
FNR ⇥ prior

FNR ⇥ prior + TNR ⇥ (1 � prior)
(2.59)

=
0.125 ⇥ 0.1

0.125 ⇥ 0.1 + 0.975 ⇥ 0.9
= 0.014 (2.60)

So there is just a 1.4% chance you are infected.
Nowadays COVID-19 prevalence is much lower. Suppose we repeat these calculations using a base

rate of 1%; now the posteriors reduce to 26% and 0.13% respectively.
The fact that you only have a 26% chance of being infected with COVID-19, even after a positive

test, is very counter-intuitive. The reason is that a single positive test is more likely to be a false
positive than due to the disease, since the disease is rare. To see this, suppose we have a population
of 100,000 people, of whom 1000 are infected. Of those who are infected, 875 = 0.875 ⇥ 1000 test
positive, and of those who are uninfected, 2475 = 0.025⇥ 99, 000 test positive. Thus the total number
of positives is 3350 = 875 + 2475, so the posterior probability of being infected given a positive test
is 875/3350 = 0.26.

Of course, the above calculations assume we know the sensitivity and specificity of the test. See
[GC20] for how to apply Bayes rule for diagnostic testing when there is uncertainty about these
parameters.

2.3.2 Example: The Monty Hall problem

In this section, we consider a more “frivolous” application of Bayes rule. In particular, we apply it to
the famous Monty Hall problem.

Imagine a game show with the following rules: There are three doors, labeled 1, 2, 3. A single prize
(e.g., a car) has been hidden behind one of them. You get to select one door. Then the gameshow
host opens one of the other two doors (not the one you picked), in such a way as to not reveal the
prize location. At this point, you will be given a fresh choice of door: you can either stick with your
first choice, or you can switch to the other closed door. All the doors will then be opened and you
will receive whatever is behind your final choice of door.

For example, suppose you choose door 1, and the gameshow host opens door 3, revealing nothing
behind the door, as promised. Should you (a) stick with door 1, or (b) switch to door 2, or (c) does
it make no difference?
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Door 1 Door 2 Door 3 Switch Stay
Car - - Lose Win
- Car - Win Lose
- - Car Win Lose

Table 2.2: 3 possible states for the Monty Hall game, showing that switching doors is two times better (on
average) than staying with your original choice. Adapted from Table 6.1 of [PM18].

Intuitively, it seems it should make no difference, since your initial choice of door cannot influence
the location of the prize. However, the fact that the host opened door 3 tells us something about the
location of the prize, since he made his choice conditioned on the knowledge of the true location and
on your choice. As we show below, you are in fact twice as likely to win the prize if you switch to
door 2.

To show this, we will use Bayes’ rule. Let Hi denote the hypothesis that the prize is behind door i.
We make the following assumptions: the three hypotheses H1, H2 and H3 are equiprobable a priori,
i.e.,

P (H1) = P (H2) = P (H3) =
1

3
. (2.61)

The datum we receive, after choosing door 1, is either Y = 3 and Y = 2 (meaning door 3 or 2 is
opened, respectively). We assume that these two possible outcomes have the following probabilities.
If the prize is behind door 1, then the host selects at random between Y = 2 and Y = 3. Otherwise
the choice of the host is forced and the probabilities are 0 and 1.

P (Y = 2|H1) =
1

2
P (Y = 2|H2) = 0 P (Y = 2|H3) = 1

P (Y = 3|H1) =
1

2
P (Y = 3|H2) = 1 P (Y = 3|H3) = 0

(2.62)

Now, using Bayes’ theorem, we evaluate the posterior probabilities of the hypotheses:

P (Hi|Y = 3) =
P (Y = 3|Hi)P (Hi)

P (Y = 3)
(2.63)

P (H1|Y = 3) =
(1/2)(1/3)

P (Y =3)
P (H2|Y = 3) =

(1)(1/3)

P (Y =3)
P (H3|Y = 3) =

(0)(1/3)

P (Y =3)
(2.64)

The denominator P (Y = 3) is P (Y = 3) =
1

6
+

1

3
=

1

2
. So

P (H1|Y = 3) =
1

3
P (H2|Y = 3) =

2

3
P (H3|Y = 3) = 0. (2.65)

So the contestant should switch to door 2 in order to have the biggest chance of getting the prize.
See Table 2.2 for a worked example.

Many people find this outcome surprising. One way to make it more intuitive is to perform a
thought experiment in which the game is played with a million doors. The rules are now that the
contestant chooses one door, then the game show host opens 999,998 doors in such a way as not to
reveal the prize, leaving the contestant’s selected door and one other door closed. The contestant
may now stick or switch. Imagine the contestant confronted by a million doors, of which doors 1 and
234,598 have not been opened, door 1 having been the contestant’s initial guess. Where do you think
the prize is?
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Figure 2.8: Any planar line-drawing is geometrically consistent with infinitely many 3-D structures. From
Figure 11 of [SA93]. Used with kind permission of Pawan Sinha.

2.3.3 Inverse problems *

Probability theory is concerned with predicting a distribution over outcomes y given knowledge (or
assumptions) about the state of the world, h. By contrast, inverse probability is concerned with
inferring the state of the world from observations of outcomes. We can think of this as inverting the
h ! y mapping.

For example, consider trying to infer a 3d shape h from a 2d image y, which is a classic problem
in visual scene understanding. Unfortunately, this is a fundamentally ill-posed problem, as
illustrated in Figure 2.8, since there are multiple possible hidden h’s consistent with the same observed
y (see e.g., [Piz01]). Similarly, we can view natural language understanding as an ill-posed
problem, in which the listener must infer the intention h from the (often ambiguous) words spoken
by the speaker (see e.g., [Sab21]).

To tackle such inverse problems, we can use Bayes’ rule to compute the posterior, p(h|y), which
gives a distribution over possible states of the world. This requires specifying the forwards model,
p(y|h), as well as a prior p(h), which can be used to rule out (or downweight) implausible world
states. We discuss this topic in more detail in the sequel to this book, [Mur23].

2.4 Bernoulli and binomial distributions

Perhaps the simplest probability distribution is the Bernoulli distribution, which can be used to
model binary events, as we discuss below.

2.4.1 Definition

Consider tossing a coin, where the probability of event that it lands heads is given by 0  ✓  1.
Let Y = 1 denote this event, and let Y = 0 denote the event that the coin lands tails. Thus we are
assuming that p(Y = 1) = ✓ and p(Y = 0) = 1 � ✓. This is called the Bernoulli distribution, and
can be written as follows

Y ⇠ Ber(✓) (2.66)
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Figure 2.9: Illustration of the binomial distribution with N = 10 and (a) ✓ = 0.25 and (b) ✓ = 0.9. Generated
by binom_dist_plot.ipynb.

where the symbol ⇠ means “is sampled from” or “is distributed as”, and Ber refers to Bernoulli. The
probability mass function (pmf) of this distribution is defined as follows:

Ber(y|✓) =

(
1 � ✓ if y = 0

✓ if y = 1
(2.67)

(See Section 2.2.1 for details on pmf’s.) We can write this in a more concise manner as follows:

Ber(y|✓) , ✓y
(1 � ✓)1�y (2.68)

The Bernoulli distribution is a special case of the binomial distribution. To explain this, suppose
we observe a set of N Bernoulli trials, denoted yn ⇠ Ber(·|✓), for n = 1 : N . Concretely, think of
tossing a coin N times. Let us define s to be the total number of heads, s , P

N

n=1
I (yn = 1). The

distribution of s is given by the binomial distribution:

Bin(s|N, ✓) ,
✓

N

s

◆
✓s

(1 � ✓)N�s (2.69)

where
✓

N

k

◆
, N !

(N � k)!k!
(2.70)

is the number of ways to choose k items from N (this is known as the binomial coefficient, and is
pronounced “N choose k”). See Figure 2.9 for some examples of the binomial distribution. If N = 1,
the binomial distribution reduces to the Bernoulli distribution.

2.4.2 Sigmoid (logistic) function

When we want to predict a binary variable y 2 {0, 1} given some inputs x 2 X , we need to use a
conditional probability distribution of the form

p(y|x, ✓) = Ber(y|f(x; ✓)) (2.71)
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Figure 2.10: (a) The sigmoid (logistic) function �(a) = (1 + e�a)�1. (b) The Heaviside function I (a > 0).
Generated by activation_fun_plot.ipynb.

�(x) , 1

1 + e�x
=

ex

1 + ex
(2.72)

d

dx
�(x) = �(x)(1 � �(x)) (2.73)

1 � �(x) = �(�x) (2.74)

��1
(p) = log

✓
p

1 � p

◆
, logit(p) (2.75)

�+(x) , log(1 + ex
) , softplus(x) (2.76)

d

dx
�+(x) = �(x) (2.77)

Table 2.3: Some useful properties of the sigmoid (logistic) and related functions. Note that the logit function
is the inverse of the sigmoid function, and has a domain of [0, 1].

where f(x; ✓) is some function that predicts the mean parameter of the output distribution. We will
consider many different kinds of function f in Part II–Part IV.

To avoid the requirement that 0  f(x;✓)  1, we can let f be an unconstrained function, and
use the following model:

p(y|x, ✓) = Ber(y|�(f(x; ✓))) (2.78)

Here �() is the sigmoid or logistic function, defined as follows:

�(a) , 1

1 + e�a
(2.79)

where a = f(x; ✓). The term “sigmoid” means S-shaped: see Figure 2.10a for a plot. We see that it
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Figure 2.11: Logistic regression applied to a 1-dimensional, 2-class version of the Iris dataset. Generated by
iris_logreg.ipynb. Adapted from Figure 4.23 of [Gér19].

maps the whole real line to [0, 1], which is necessary for the output to be interpreted as a probability
(and hence a valid value for the Bernoulli parameter ✓). The sigmoid function can be thought of as a
“soft” version of the heaviside step function, defined by

H(a) , I (a > 0) (2.80)

as shown in Figure 2.10b.
Plugging the definition of the sigmoid function into Equation (2.78) we get

p(y = 1|x, ✓) =
1

1 + e�a
=

ea

1 + ea
= �(a) (2.81)

p(y = 0|x, ✓) = 1 �
1

1 + e�a
=

e�a

1 + e�a
=

1

1 + ea
= �(�a) (2.82)

The quantity a is equal to the log odds, log(
p

1�p
), where p = p(y = 1|x; ✓). To see this, note that

log

✓
p

1 � p

◆
= log

✓
ea

1 + ea

1 + ea

1

◆
= log(ea

) = a (2.83)

The logistic function or sigmoid function maps the log-odds a to p:

p = logistic(a) = �(a) , 1

1 + e�a
=

ea

1 + ea
(2.84)

The inverse of this is called the logit function, and maps p to the log-odds a:

a = logit(p) = ��1
(p) , log

✓
p

1 � p

◆
(2.85)

See Table 2.3 for some useful properties of these functions.

2.4.3 Binary logistic regression

In this section, we use a conditional Bernoulli model, where we use a linear predictor of the form
f(x; ✓) = wTx + b. Thus the model has the form

p(y|x; ✓) = Ber(y|�(wTx + b)) (2.86)
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In other words,

p(y = 1|x; ✓) = �(wTx + b) =
1

1 + e�(wTx+b)
(2.87)

This is called logistic regression.
For example consider a 1-dimensional, 2-class version of the iris dataset, where the positive class is

“Virginica” and the negative class is “not Virginica”, and the feature x we use is the petal width. We
fit a logistic regression model to this and show the results in Figure 2.11. The decision boundary
corresponds to the value x⇤ where p(y = 1|x = x⇤, ✓) = 0.5. We see that, in this example, x⇤

⇡ 1.7.
As x moves away from this boundary, the classifier becomes more confident in its prediction about
the class label.

It should be clear from this example why it would be inappropriate to use linear regression for a
(binary) classification problem. In such a model, the probabilities would increase above 1 as we move
far enough to the right, and below 0 as we move far enough to the left.

For more detail on logistic regression, see Chapter 10.

2.5 Categorical and multinomial distributions

To represent a distribution over a finite set of labels, y 2 {1, . . . , C}, we can use the categorical
distribution, which generalizes the Bernoulli to C > 2 values.

2.5.1 Definition

The categorical distribution is a discrete probability distribution with one parameter per class:

Cat(y|✓) ,
CY

c=1

✓I(y=c)

c
(2.88)

In other words, p(y = c|✓) = ✓c. Note that the parameters are constrained so that 0  ✓c  1 andP
C

c=1
✓c = 1; thus there are only C � 1 independent parameters.

We can write the categorical distribution in another way by converting the discrete variable y into
a one-hot vector with C elements, all of which are 0 except for the entry corresponding to the class
label. (The term “one-hot” arises from electrical engineering, where binary vectors are encoded as
electrical current on a set of wires, which can be active (“hot”) or not (“cold”).) For example, if C = 3,
we encode the classes 1, 2 and 3 as (1, 0, 0), (0, 1, 0), and (0, 0, 1). More generally, we can encode the
classes using unit vectors, where ec is all 0s except for dimension c. (This is also called a dummy
encoding.) Using one-hot encodings, we can write the categorical distribution as follows:

Cat(y|✓) ,
CY

c=1

✓yc
c

(2.89)

The categorical distribution is a special case of the multinomial distribution. To explain this,
suppose we observe N categorical trials, yn ⇠ Cat(·|✓), for n = 1 : N . Concretely, think of rolling
a C-sided dice N times. Let us define y to be a vector that counts the number of times each face
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Figure 2.12: Softmax distribution softmax(a/T ), where a = (3, 0, 1), at temperatures of T = 100, T = 2
and T = 1. When the temperature is high (left), the distribution is uniform, whereas when the temperature
is low (right), the distribution is “spiky”, with most of its mass on the largest element. Generated by
softmax_plot.ipynb.

shows up, i.e., yc = Nc , P
N

n=1
I (yn = c). Now y is no longer one-hot, but is “multi-hot”, since it

has a non-zero entry for every value of c that was observed across all N trials. The distribution of y
is given by the multinomial distribution:

M(y|N, ✓) ,
✓

N

y1 . . . yC

◆ CY

c=1

✓yc
c

=

✓
N

N1 . . . NC

◆ CY

c=1

✓Nc
c

(2.90)

where ✓c is the probability that side c shows up, and
✓

N

N1 . . . NC

◆
, N !

N1!N2! · · · NC !
(2.91)

is the multinomial coefficient, which is the number of ways to divide a set of size N =
P

C

c=1
Nc

into subsets with sizes N1 up to NC . If N = 1, the multinomial distribution becomes the categorical
distribution.

2.5.2 Softmax function

In the conditional case, we can define

p(y|x, ✓) = Cat(y|f(x; ✓)) (2.92)

which we can also write as

p(y|x, ✓) = M(y|1, f(x; ✓)) (2.93)

We require that 0  fc(x; ✓)  1 and
P

C

c=1
fc(x; ✓) = 1.

To avoid the requirement that f directly predict a probability vector, it is common to pass the
output from f into the softmax function [Bri90], also called the multinomial logit. This is defined
as follows:

softmax(a) ,
"

ea1

P
C

c0=1
eac0

, . . . ,
eaC

P
C

c0=1
eac0

#
(2.94)
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Figure 2.13: Logistic regression on the 3-class, 2-feature version of the Iris dataset. Adapted from Figure of
4.25 [Gér19]. Generated by iris_logreg.ipynb.

This maps R
C to [0, 1]

C , and satisfies the constraints that 0  softmax(a)c  1 and
P

C

c=1
softmax(a)c =

1. The inputs to the softmax, a = f(x; ✓), are called logits, and are a generalization of the log odds.
The softmax function is so-called since it acts a bit like the argmax function. To see this, let us

divide each ac by a constant T called the temperature.8 Then as T ! 0, we find

softmax(a/T )c =

⇢
1.0 if c = argmax

c0 ac0

0.0 otherwise (2.95)

In other words, at low temperatures, the distribution puts most of its probability mass in the most
probable state (this is called winner takes all), whereas at high temperatures, it spreads the mass
uniformly. See Figure 2.12 for an illustration.

2.5.3 Multiclass logistic regression

If we use a linear predictor of the form f(x; ✓) = Wx + b, where W is a C ⇥ D matrix, and b is a
C-dimensional bias vector, the final model becomes

p(y|x; ✓) = Cat(y|softmax(Wx + b)) (2.96)

Let a = Wx + b be the C-dimensional vector of logits. Then we can rewrite the above as follows:

p(y = c|x; ✓) =
eac

P
C

c0=1
eac0

(2.97)

This is known as multinomial logistic regression.
If we have just two classes, this reduces to binary logistic regression. To see this, note that

softmax(a)0 =
ea0

ea0 + ea1
=

1

1 + ea1�a0
= �(a0 � a1) (2.98)

so we can just train the model to predict a = a1 � a0. This can be done with a single weight vector
w; if we use the multi-class formulation, we will have two weight vectors, w0 and w1. Such a model
is over-parameterized, which can hurt interpretability, but the predictions will be the same.

8. This terminology comes from the area of statistical physics. The Boltzmann distribution is a distribution over
states which has the same form as the softmax function.
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We discuss this in more detail in Section 10.3. For now, we just give an example. Figure 2.13
shows what happens when we fit this model to the 3-class iris dataset, using just 2 features. We see
that the decision boundaries between each class are linear. We can create nonlinear boundaries by
transforming the features (e.g., using polynomials), as we discuss in Section 10.3.1.

2.5.4 Log-sum-exp trick

In this section, we discuss one important practical detail to pay attention to when working with
the softmax distribution. Suppose we want to compute the normalized probability pc = p(y = c|x),
which is given by

pc =
eac

Z(a)
=

eac

P
C

c0=1
eac0

(2.99)

where a = f(x;✓) are the logits. We might encounter numerical problems when computing the
partition function Z. For example, suppose we have 3 classes, with logits a = (0, 1, 0). Then we find
Z = e0

+e1
+e0

= 4.71. But now suppose a = (1000, 1001, 1000); we find Z = 1, since on a computer,
even using 64 bit precision, np.exp(1000)=inf. Similarly, suppose a = (�1000, �999, �1000); now
we find Z = 0, since np.exp(-1000)=0. To avoid numerical problems, we can use the following
identity:

log

CX

c=1

exp(ac) = m + log

CX

c=1

exp(ac � m) (2.100)

This holds for any m. It is common to use m = maxc ac which ensures that the largest value you
exponentiate will be zero, so you will definitely not overflow, and even if you underflow, the answer
will be sensible. This is known as the log-sum-exp trick. We use this trick when implementing the
lse function:

lse(a) , log

CX

c=1

exp(ac) (2.101)

We can use this to compute the probabilities from the logits:

p(y = c|x) = exp(ac � lse(a)) (2.102)

We can then pass this to the cross-entropy loss, defined in Equation (5.41).
However, to save computational effort, and for numerical stability, it is quite common to modify

the cross-entropy loss so that it takes the logits a as inputs, instead of the probability vector p. For
example, consider the binary case. The CE loss for one example is

L = � [I (y = 0) log p0 + I (y = 1) log p1] (2.103)

where

log p1 = log

✓
1

1 + exp(�a)

◆
= log(1) � log(1 + exp(�a)) = 0 � lse([0, �a]) (2.104)

log p0 = 0 � lse([0, +a]) (2.105)
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2.6 Univariate Gaussian (normal) distribution

The most widely used distribution of real-valued random variables y 2 R is the Gaussian distribu-
tion, also called the normal distribution (see Section 2.6.4 for a discussion of these names).

2.6.1 Cumulative distribution function

We define the cumulative distribution function or cdf of a continuous random variable Y as
follows:

P (y) , Pr(Y  y) (2.106)

(Note that we use a capital P to represent the cdf.) Using this, we can compute the probability of
being in any interval as follows:

Pr(a < Y  b) = P (b) � P (a) (2.107)

Cdf’s are monotonically non-decreasing functions.
The cdf of the Gaussian is defined by

�(y; µ, �2
) ,

Z
y

�1

N (z|µ, �2
)dz (2.108)

See Figure 2.2a for a plot. Note that the cdf of the Gaussian is often implemented using �(y; µ, �2
) =

1

2
[1 + erf(z/

p
2)], where z = (y � µ)/� and erf(u) is the error function, defined as

erf(u) , 2
p

⇡

Z
u

0

e�t
2

dt (2.109)

The parameter µ encodes the mean of the distribution; in the case of a Gaussian, this is also
the same as the mode. The parameter �2 encodes the variance. (Sometimes we talk about the
precision of a Gaussian, which is the inverse variance, denoted � = 1/�2.) When µ = 0 and � = 1,
the Gaussian is called the standard normal distribution.

If P is the cdf of Y , then P�1
(q) is the value yq such that p(Y  yq) = q; this is called the q’th

quantile of P . The value P�1
(0.5) is the median of the distribution, with half of the probability

mass on the left, and half on the right. The values P�1
(0.25) and P�1

(0.75) are the lower and upper
quartiles.

For example, let � be the cdf of the Gaussian distribution N (0, 1), and �
�1 be the inverse cdf (also

known as the probit function). Then points to the left of �
�1

(↵/2) contain ↵/2 of the probability
mass, as illustrated in Figure 2.2b. By symmetry, points to the right of �

�1
(1 � ↵/2) also contain

↵/2 of the mass. Hence the central interval (�
�1

(↵/2), ��1
(1 � ↵/2)) contains 1 � ↵ of the mass. If

we set ↵ = 0.05, the central 95% interval is covered by the range

(�
�1

(0.025), ��1
(0.975)) = (�1.96, 1.96) (2.110)

If the distribution is N (µ, �2
), then the 95% interval becomes (µ � 1.96�, µ + 1.96�). This is often

approximated by writing µ ± 2�.
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2.6.2 Probability density function

We define the probability density function or pdf as the derivative of the cdf:

p(y) , d

dy
P (y) (2.111)

The pdf of the Gaussian is given by

N (y|µ, �2
) , 1

p

2⇡�2
e�

1
2�2 (y�µ)

2

(2.112)

where
p

2⇡�2 is the normalization constant needed to ensure the density integrates to 1 (see
Exercise 2.12). See Figure 2.2b for a plot.

Given a pdf, we can compute the probability of a continuous variable being in a finite interval as
follows:

Pr(a < Y  b) =

Z
b

a

p(y)dy = P (b) � P (a) (2.113)

As the size of the interval gets smaller, we can write

Pr(y  Y  y + dy) ⇡ p(y)dy (2.114)

Intuitively, this says the probability of Y being in a small interval around y is the density at y times
the width of the interval. One important consequence of the above result is that the pdf at a point
can be larger than 1. For example, N (0|0, 0.1) = 3.99.

We can use the pdf to compute the mean, or expected value, of the distribution:

E [Y ] ,
Z

Y

y p(y)dy (2.115)

For a Gaussian, we have the familiar result that E
⇥
N (·|µ, �2

)
⇤

= µ. (Note, however, that for some
distributions, this integral is not finite, so the mean is not defined.)

We can also use the pdf to compute the variance of a distribution. This is a measure of the
“spread”, and is often denoted by �2. The variance is defined as follows:

V [Y ] , E
⇥
(Y � µ)

2
⇤

=

Z
(y � µ)

2p(y)dy (2.116)

=

Z
y2p(y)dy + µ2

Z
p(y)dy � 2µ

Z
yp(y)dy = E

⇥
Y 2

⇤
� µ2 (2.117)

from which we derive the useful result

E
⇥
Y 2

⇤
= �2

+ µ2 (2.118)

The standard deviation is defined as

std [Y ] ,
p

V [Y ] = � (2.119)

(The standard deviation can be more intepretable than the variance since it has the same units as Y
itself.) For a Gaussian, we have the familiar result that std

⇥
N (·|µ, �2

)
⇤

= �.

Draft of “Probabilistic Machine Learning: An Introduction”. June 22, 2023



2.6. Univariate Gaussian (normal) distribution 59

(a) (b)

Figure 2.14: Linear regression using Gaussian output with mean µ(x) = b + wx and (a) fixed vari-
ance �2 (homoskedastic) or (b) input-dependent variance �(x)2 (heteroscedastic). Generated by lin-
reg_1d_hetero_tfp.ipynb.

2.6.3 Regression

So far we have been considering the unconditional Gaussian distribution. In some cases, it is helpful
to make the parameters of the Gaussian be functions of some input variables, i.e., we want to create
a conditional density model of the form

p(y|x; ✓) = N (y|fµ(x; ✓), f�(x; ✓)
2
) (2.120)

where fµ(x; ✓) 2 R predicts the mean, and f�(x; ✓)
2

2 R+ predicts the variance.
It is common to assume that the variance is fixed, and is independent of the input. This is called

homoscedastic regression. Furthermore it is common to assume the mean is a linear function of
the input. The resulting model is called linear regression:

p(y|x; ✓) = N (y|wTx + b, �2
) (2.121)

where ✓ = (w, b, �2
). See Figure 2.14(a) for an illustration of this model in 1d. and Section 11.2 for

more details on this model.
However, we can also make the variance depend on the input; this is called heteroskedastic

regression. In the linear regression setting, we have

p(y|x; ✓) = N (y|wT
µ
x + b, �+(wT

�
x)) (2.122)

where ✓ = (wµ, w�) are the two forms of regression weights, and

�+(a) = log(1 + ea
) (2.123)

is the softplus function, that maps from R to R+, to ensure the predicted standard deviation is
non-negative. See Figure 2.14(b) for an illustration of this model in 1d.

Note that Figure 2.14 plots the 95% predictive interval, [µ(x) � 2�(x), µ(x) + 2�(x)]. This is the
uncertainty in the predicted observation y given x, and captures the variability in the blue dots.
By contrast, the uncertainty in the underlying (noise-free) function is represented by

p
V [fµ(x; ✓)],

which does not involve the � term; now the uncertainty is over the parameters ✓, rather than the
output y. See Section 11.7 for details on how to model parameter uncertainty.
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2.6.4 Why is the Gaussian distribution so widely used?

The Gaussian distribution is the most widely used distribution in statistics and machine learning.
There are several reasons for this. First, it has two parameters which are easy to interpret, and which
capture some of the most basic properties of a distribution, namely its mean and variance. Second,
the central limit theorem (Section 2.8.6) tells us that sums of independent random variables have an
approximately Gaussian distribution, making it a good choice for modeling residual errors or “noise”.
Third, the Gaussian distribution makes the least number of assumptions (has maximum entropy),
subject to the constraint of having a specified mean and variance, as we show in Section 3.4.4; this
makes it a good default choice in many cases. Finally, it has a simple mathematical form, which
results in easy to implement, but often highly effective, methods, as we will see in Section 3.2.

From a historical perspective, it’s worth remarking that the term “Gaussian distribution” is a bit
misleading, since, as Jaynes [Jay03, p241] notes: “The fundamental nature of this distribution and
its main properties were noted by Laplace when Gauss was six years old; and the distribution itself
had been found by de Moivre before Laplace was born”. However, Gauss popularized the use of the
distribution in the 1800s, and the term “Gaussian” is now widely used in science and engineering.

The name “normal distribution” seems to have arisen in connection with the normal equations
in linear regression (see Section 11.2.2.2). However, we prefer to avoid the term “normal”, since it
suggests other distributions are “abnormal”, whereas, as Jaynes [Jay03] points out, it is the Gaussian
that is abnormal in the sense that it has many special properties that are untypical of general
distributions.

2.6.5 Dirac delta function as a limiting case

As the variance of a Gaussian goes to 0, the distribution approaches an infinitely narrow, but infinitely
tall, “spike” at the mean. We can write this as follows:

lim
�!0

N (y|µ, �2
) ! �(y � µ) (2.124)

where � is the Dirac delta function, defined by

�(x) =

(
+1 if x = 0

0 if x 6= 0
(2.125)

where
Z

1

�1

�(x)dx = 1 (2.126)

A slight variant of this is to define

�y(x) =

(
+1 if x = y

0 if x 6= y
(2.127)

Note that we have

�y(x) = �(x � y) (2.128)
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Figure 2.15: (a) The pdf’s for a N (0, 1), T (µ = 0, � = 1, ⌫ = 1), T (µ = 0, � = 1, ⌫ = 2), and
Laplace(0, 1/

p
2). The mean is 0 and the variance is 1 for both the Gaussian and Laplace. When ⌫ = 1,

the Student is the same as the Cauchy, which does not have a well-defined mean and variance. (b) Log of
these pdf’s. Note that the Student distribution is not log-concave for any parameter value, unlike the Laplace
distribution. Nevertheless, both are unimodal. Generated by student_laplace_pdf_plot.ipynb.

The delta function distribution satisfies the following sifting property, which we will use later on:
Z

1

�1

f(y)�(x � y)dy = f(x) (2.129)

2.7 Some other common univariate distributions *

In this section, we briefly introduce some other univariate distributions that we will use in this book.

2.7.1 Student t distribution

The Gaussian distribution is quite sensitive to outliers. A robust alternative to the Gaussian is
the Student t-distribution, which we shall call the Student distribution for short.9 Its pdf is
as follows:

T (y|µ, �2, ⌫) /

"
1 +

1

⌫

✓
y � µ

�

◆2
#�(

⌫+1
2 )

(2.130)

where µ is the mean, � > 0 is the scale parameter (not the standard deviation), and ⌫ > 0 is called
the degrees of freedom (although a better term would be the degree of normality [Kru13], since
large values of ⌫ make the distribution act like a Gaussian).

9. This distribution has a colorful etymology. It was first published in 1908 by William Sealy Gosset, who worked at
the Guinness brewery in Dublin, Ireland. Since his employer would not allow him to use his own name, he called it the
“Student” distribution. The origin of the term t seems to have arisen in the context of tables of the Student distribution,
used by Fisher when developing the basis of classical statistical inference. See http://jeff560.tripod.com/s.html for
more historical details.
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Figure 2.16: Illustration of the effect of outliers on fitting Gaussian, Student and Laplace distributions. (a)
No outliers (the Gaussian and Student curves are on top of each other). (b) With outliers. We see that the
Gaussian is more affected by outliers than the Student and Laplace distributions. Adapted from Figure 2.16
of [Bis06]. Generated by robust_pdf_plot.ipynb.

We see that the probability density decays as a polynomial function of the squared distance from
the center, as opposed to an exponential function, so there is more probability mass in the tail than
with a Gaussian distribution, as shown in Figure 2.15. We say that the Student distribution has
heavy tails, which makes it robust to outliers.

To illustrate the robustness of the Student distribution, consider Figure 2.16. On the left, we show
a Gaussian and a Student distribution fit to some data with no outliers. On the right, we add some
outliers. We see that the Gaussian is affected a lot, whereas the Student hardly changes. We discuss
how to use the Student distribution for robust linear regression in Section 11.6.2.

For later reference, we note that the Student distribution has the following properties:

mean = µ, mode = µ, var =
⌫�2

(⌫ � 2)
(2.131)

The mean is only defined if ⌫ > 1. The variance is only defined if ⌫ > 2. For ⌫ � 5, the Student
distribution rapidly approaches a Gaussian distribution and loses its robustness properties. It is
common to use ⌫ = 4, which gives good performance in a range of problems [LLT89].

2.7.2 Cauchy distribution

If ⌫ = 1, the Student distribution is known as the Cauchy or Lorentz distribution. Its pdf is defined
by

C(x|µ, �) =
1

�⇡

"
1 +

✓
x � µ

�

◆2
#�1

(2.132)

This distribution has very heavy tails compared to a Gaussian. For example, 95% of the values from
a standard normal are between -1.96 and 1.96, but for a standard Cauchy they are between -12.7
and 12.7. In fact the tails are so heavy that the integral that defines the mean does not converge.
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The half Cauchy distribution is a version of the Cauchy (with µ = 0) that is “folded over” on
itself, so all its probability density is on the positive reals. Thus it has the form

C+(x|�) , 2

⇡�

"
1 +

✓
x

�

◆2
#�1

(2.133)

This is useful in Bayesian modeling, where we want to use a distribution over positive reals with
heavy tails, but finite density at the origin.

2.7.3 Laplace distribution

Another distribution with heavy tails is the Laplace distribution10, also known as the double
sided exponential distribution. This has the following pdf:

Laplace(y|µ, b) , 1

2b
exp

✓
�

|y � µ|

b

◆
(2.134)

See Figure 2.15 for a plot. Here µ is a location parameter and b > 0 is a scale parameter. This
distribution has the following properties:

mean = µ, mode = µ, var = 2b2 (2.135)

In Section 11.6.1, we discuss how to use the Laplace distribution for robust linear regression, and
in Section 11.4, we discuss how to use the Laplace distribution for sparse linear regression.

2.7.4 Beta distribution

The beta distribution has support over the interval [0, 1] and is defined as follows:

Beta(x|a, b) =
1

B(a, b)
xa�1

(1 � x)
b�1 (2.136)

where B(a, b) is the beta function, defined by

B(a, b) , �(a)�(b)

�(a + b)
(2.137)

where �(a) is the Gamma function defined by

�(a) ,
Z

1

0

xa�1e�xdx (2.138)

See Figure 2.17a for plots of some beta distributions.
We require a, b > 0 to ensure the distribution is integrable (i.e., to ensure B(a, b) exists). If

a = b = 1, we get the uniform distribution. If a and b are both less than 1, we get a bimodal
distribution with “spikes” at 0 and 1; if a and b are both greater than 1, the distribution is unimodal.

For later reference, we note that the distribution has the following properties (Exercise 2.8):

mean =
a

a + b
, mode =

a � 1

a + b � 2
, var =

ab

(a + b)2(a + b + 1)
(2.139)

10. Pierre-Simon Laplace (1749–1827) was a French mathematician, who played a key role in creating the field of
Bayesian statistics.
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Figure 2.17: (a) Some beta distributions. If a < 1, we get a “spike” on the left, and if b < 1, we get a “spike”
on the right. if a = b = 1, the distribution is uniform. If a > 1 and b > 1, the distribution is unimodal.
Generated by beta_dist_plot.ipynb. (b) Some gamma distributions. If a  1, the mode is at 0, otherwise the
mode is away from 0. As we increase the rate b, we reduce the horizontal scale, thus squeezing everything
leftwards and upwards. Generated by gamma_dist_plot.ipynb.

2.7.5 Gamma distribution

The gamma distribution is a flexible distribution for positive real valued rv’s, x > 0. It is defined
in terms of two parameters, called the shape a > 0 and the rate b > 0:

Ga(x|shape = a, rate = b) , ba

�(a)
xa�1e�xb (2.140)

Sometimes the distribution is parameterized in terms of the shape a and the scale s = 1/b:

Ga(x|shape = a, scale = s) , 1

sa�(a)
xa�1e�x/s (2.141)

See Figure 2.17b for some plots of the gamma pdf.
For reference, we note that the distribution has the following properties:

mean =
a

b
, mode =

a � 1

b
, var =

a

b2
(2.142)

There are several distributions which are just special cases of the Gamma, which we discuss below.

• Exponential distribution. This is defined by

Expon(x|�) , Ga(x|shape = 1, rate = �) (2.143)

This distribution describes the times between events in a Poisson process, i.e. a process in which
events occur continuously and independently at a constant average rate �.
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(a) (b)

Figure 2.18: Illustration of the (a) empirical pdf and (b) empirical cdf derived from a set of N = 5 samples.
From https: // bit. ly/ 3hFgi0e . Used with kind permission of Mauro Escudero.

• Chi-squared distribution. This is defined by

�2

⌫
(x) , Ga(x|shape =

⌫

2
, rate =

1

2
) (2.144)

where ⌫ is called the degrees of freedom. This is the distribution of the sum of squared Gaussian
random variables. More precisely, if Zi ⇠ N (0, 1), and S =

P
⌫

i=1
Z2

i
, then S ⇠ �2

⌫
.

• The inverse Gamma distribution is defined as follows:

IG(x|shape = a, scale = b) , ba

�(a)
x�(a+1)e�b/x (2.145)

The distribution has these properties

mean =
b

a � 1
, mode =

b

a + 1
, var =

b2

(a � 1)2(a � 2)
(2.146)

The mean only exists if a > 1. The variance only exists if a > 2. Note: if X ⇠ Ga(shape =

a, rate = b), then 1/X ⇠ IG(shape = a, scale = b). (Note that b plays two different roles in this
case.)

2.7.6 Empirical distribution

Suppose we have a set of N samples D = {x(1), . . . , x(N)
}, derived from a distribution p(X), where

X 2 R. We can approximate the pdf using a set of delta functions (Section 2.6.5) or “spikes”, centered
on these samples:

p̂N (x) =
1

N

NX

n=1

�x(n)(x) (2.147)
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This is called the empirical distribution of the dataset D. An example of this, with N = 5, is
shown in Figure 2.18(a).

The corresponding cdf is given by

P̂N (x) =
1

N

NX

n=1

I

⇣
x(n)

 x
⌘

=
1

N

NX

n=1

ux(n)(x) (2.148)

where uy(x) is a step function at y defined by

uy(x) =

(
1 if x � y

0 if x < y
(2.149)

This can be visualized as a “stair case”, as in Figure 2.18(b), where the jumps of height 1/N occur at
every sample.

2.8 Transformations of random variables *

Suppose x ⇠ p() is some random variable, and y = f(x) is some deterministic transformation of it.
In this section, we discuss how to compute p(y).

2.8.1 Discrete case

If X is a discrete rv, we can derive the pmf for Y by simply summing up the probability mass for all
the x’s such that f(x) = y:

py(y) =

X

x:f(x)=y

px(x) (2.150)

For example, if f(X) = 1 if X is even and f(X) = 0 otherwise, and px(X) is uniform on the set
{1, . . . , 10}, then py(1) =

P
x2{2,4,6,8,10}

px(x) = 0.5, and hence py(0) = 0.5 also. Note that in this
example, f is a many-to-one function.

2.8.2 Continuous case

If X is continuous, we cannot use Equation (2.150) since px(x) is a density, not a pmf, and we cannot
sum up densities. Instead, we work with cdf’s, as follows:

Py(y) , Pr(Y  y) = Pr(f(X)  y) = Pr(X 2 {x|f(x)  y}) (2.151)

If f is invertible, we can derive the pdf of y by differentiating the cdf, as we show below. If f is not
invertible, we can use numerical integration, or a Monte Carlo approximation.

2.8.3 Invertible transformations (bijections)

In this section, we consider the case of monotonic and hence invertible functions. (Note a function is
invertible iff it is a bijector). With this assumption, there is a simple formula for the pdf of y, as we
will see. (This can be generalized to invertible, but non-monotonic, functions, but we ignore this
case.)
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(a) (b)

Figure 2.19: (a) Mapping a uniform pdf through the function f(x) = 2x + 1. (b) Illustration of how two
nearby points, x and x + dx, get mapped under f . If dy

dx > 0, the function is locally increasing, but if dy
dx < 0,

the function is locally decreasing. (In the latter case, if f(x) = y + dy, then f(x + dx) = y, since increasing x
by dx should decrease the output by dy.) x + dx > x. From [Jan18]. Used with kind permission of Eric Jang.

2.8.3.1 Change of variables: scalar case

We start with an example. Suppose x ⇠ Unif(0, 1), and y = f(x) = 2x + 1. This function stretches
and shifts the probability distribution, as shown in Figure 2.19(a). Now let us zoom in on a point x
and another point that is infinitesimally close, namely x + dx. We see this interval gets mapped to
(y, y + dy). The probability mass in these intervals must be the same, hence p(x)dx = p(y)dy, and so
p(y) = p(x)dx/dy. However, since it does not matter (in terms of probability preservation) whether
dx/dy > 0 or dx/dy < 0, we get

py(y) = px(x)|
dx

dy
| (2.152)

Now consider the general case for any px(x) and any monotonic function f : R ! R. Let g = f�1,
so y = f(x) and x = g(y). If we assume that f : R ! R is monotonically increasing we get

Py(y) = Pr(f(X)  y) = Pr(X  f�1
(y)) = Px(f�1

(y)) = Px(g(y)) (2.153)

Taking derivatives we get

py(y) , d

dy
Py(y) =

d

dy
Px(x) =

dx

dy

d

dx
Px(x) =

dx

dy
px(x) (2.154)

We can derive a similar expression (but with opposite signs) for the case where f is monotonically
decreasing. To handle the general case we take the absolute value to get

py(y) = px (g(y))
�� d

dy
g(y)

�� (2.155)

This is called change of variables formula.
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Figure 2.20: Illustration of an affine transformation applied to a unit square, f(x) = Ax + b. (a) Here
A = I. (b) Here b = 0. From [Jan18]. Used with kind permission of Eric Jang.

2.8.3.2 Change of variables: multivariate case

We can extend the previous results to multivariate distributions as follows. Let f be an invertible
function that maps R

n to R
n, with inverse g. Suppose we want to compute the pdf of y = f(x). By

analogy with the scalar case, we have

py(y) = px (g(y))
�� det [Jg(y)]

�� (2.156)

where Jg =
dg(y)

dyT is the Jacobian of g, and | detJ(y)| is the absolute value of the determinant of J

evaluated at y. (See Section 7.8.5 for a discussion of Jacobians.) In Exercise 3.6 you will use this
formula to derive the normalization constant for a multivariate Gaussian.

Figure 2.20 illustrates this result in 2d, for the case where f(x) = Ax + b, where A =

✓
a c
b d

◆
.

We see that the area of the unit square changes by a factor of det(A) = ad � bc, which is the area of
the parallelogram.

As another example, consider transforming a density from Cartesian coordinates x = (x1, x2) to
polar coordinates y = f(x1, x2), so g(r, ✓) = (r cos ✓, r sin ✓). Then

Jg =

✓
@x1
@r

@x1
@✓

@x2
@r

@x2
@✓

◆
=

✓
cos ✓ �r sin ✓
sin ✓ r cos ✓

◆
(2.157)

| det(Jg)| = |r cos
2 ✓ + r sin

2 ✓| = |r| (2.158)

Hence

pr,✓(r, ✓) = px1,x2(r cos ✓, r sin ✓) r (2.159)

To see this geometrically, notice that the area of the shaded patch in Figure 2.21 is given by

Pr(r  R  r + dr, ✓  ⇥  ✓ + d✓) = pr,✓(r, ✓)drd✓ (2.160)

In the limit, this is equal to the density at the center of the patch times the size of the patch, which
is given by r dr d✓. Hence

pr,✓(r, ✓) dr d✓ = px1,x2(r cos ✓, r sin ✓) r dr d✓ (2.161)
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